RESUMEN
Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.
Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Rifampin/farmacología , Rifampin/uso terapéutico , Clofazimina/farmacología , Clofazimina/uso terapéutico , Etambutol/farmacología , Etambutol/uso terapéutico , Azitromicina/farmacología , Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Complejo Mycobacterium avium , Enfermedades Pulmonares/microbiologíaRESUMEN
BACKGROUND: Studying long-term treatment outcomes of TB is time-consuming and impractical. Early and reliable biomarkers reflecting treatment response and capable of predicting long-term outcomes are urgently needed. OBJECTIVES: To develop a pharmacometric multistate model to evaluate the link between potential predictors and long-term outcomes. METHODS: Data were obtained from two Phase II clinical trials (TMC207-C208 and TMC207-C209) with bedaquiline on top of a multidrug background regimen. Patients were typically followed throughout a 24 week investigational treatment period plus a 96 week follow-up period. A five-state multistate model (active TB, converted, recurrent TB, dropout, and death) was developed to describe observed transitions. Evaluated predictors included patient characteristics, baseline TB disease severity and on-treatment biomarkers. RESULTS: A fast bacterial clearance in the first 2 weeks and low TB bacterial burden at baseline increased probability to achieve conversion, whereas patients with XDR-TB were less likely to reach conversion. Higher estimated mycobacterial load at the end of 24 week treatment increased the probability of recurrence. At 120 weeks, the model predicted 55% (95% prediction interval, 50%-60%), 6.5% (4.2%-9.0%) and 7.5% (5.2%-10%) of patients in converted, recurrent TB and death states, respectively. Simulations predicted a substantial increase of recurrence after 24 weeks in patients with slow bacterial clearance regardless of baseline bacterial burden. CONCLUSIONS: The developed multistate model successfully described TB treatment outcomes. The multistate modelling framework enables prediction of several outcomes simultaneously, and allows mechanistically sound investigation of novel promising predictors. This may help support future biomarker evaluation, clinical trial design and analysis.
Asunto(s)
Antituberculosos , Diarilquinolinas , Tuberculosis Pulmonar , Humanos , Antituberculosos/uso terapéutico , Antituberculosos/farmacocinética , Resultado del Tratamiento , Femenino , Diarilquinolinas/uso terapéutico , Masculino , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/mortalidad , Adulto , Persona de Mediana Edad , Adulto Joven , Mycobacterium tuberculosis/efectos de los fármacos , Carga Bacteriana , Modelos Estadísticos , Anciano , RecurrenciaRESUMEN
BACKGROUND: New and shorter regimens against multi-drug resistant tuberculosis (TB) remain urgently needed. To inform treatment duration in clinical trials, this study aimed to identify human pharmacokinetic equivalent doses, antimycobacterial and sterilizing activity of a novel regimen, containing bedaquiline, delamanid, moxifloxacin and sutezolid (BDMU), in the standard mouse model (BALB/c) of Mycobacterium tuberculosis (Mtb) infection. METHODS: Treatment of mice with B25D0.6M200U200, B25D0.6M200, B25D0.6M200(U2003) or H10R10Z150E100 (isoniazid, rifampicin, pyrazinamide, ethambutol, HRZE), started 3 weeks after Mtb infection. Bactericidal activity was assessed after 1, 2, 3 and 4 months of treatment and relapse rates were assessed 3 months after completing treatment durations of 2, 3 and 4 months. RESULTS: B25D0.6M200U200 generated human equivalent exposures in uninfected BALB/c mice. After 1 month of treatment, a higher bactericidal activity was observed for the B25D0.6M200U200 and the B25D0.6M200 regimen compared to the standard H10R10Z150E100 regimen. Furthermore, 3 months of therapy with both BDM-based regimens resulted in negative lung cultures, whereas all H10R10Z150E100 treated mice were still culture positive. After 3 months of therapy 7% and 13% of mice relapsed receiving B25D0.6M200U200 and B25D0.6M200, respectively, compared to 40% for H10R10Z150E100 treatment showing an increased sterilizing activity of both BDM-based regimens. CONCLUSIONS: BDM-based regimens, with and without sutezolid, have a higher efficacy than the HRZE regimen in the BALB/c model of TB, with some improvement by adding sutezolid. By translating these results to TB patients, this novel BDMU regimen should be able to reduce treatment duration by 25% compared to HRZE therapy.
Asunto(s)
Antituberculosos , Diarilquinolinas , Modelos Animales de Enfermedad , Quimioterapia Combinada , Ratones Endogámicos BALB C , Moxifloxacino , Mycobacterium tuberculosis , Nitroimidazoles , Oxazoles , Animales , Nitroimidazoles/uso terapéutico , Nitroimidazoles/administración & dosificación , Nitroimidazoles/farmacología , Antituberculosos/uso terapéutico , Antituberculosos/farmacocinética , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Diarilquinolinas/uso terapéutico , Diarilquinolinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Ratones , Oxazoles/uso terapéutico , Oxazoles/administración & dosificación , Oxazoles/farmacología , Moxifloxacino/uso terapéutico , Moxifloxacino/administración & dosificación , Moxifloxacino/farmacología , Femenino , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Oxazolidinonas/uso terapéutico , Oxazolidinonas/administración & dosificación , Oxazolidinonas/farmacocinética , Pirazinamida/uso terapéutico , Pirazinamida/administración & dosificación , Resultado del Tratamiento , IsoxazolesRESUMEN
OBJECTIVES: Clofazimine is a promising drug for the treatment of nontuberculous mycobacterial (NTM) diseases. Accumulation of clofazimine to reach steady-state plasma concentrations takes months. A loading dose may reduce the time to steady-state-like concentrations. We evaluated the pharmacokinetics (PK), safety and tolerability of a loading dose regimen in patients with NTM disease. METHODS: Adult participants received a 4-week loading dose regimen of 300â mg clofazimine once daily, followed by a maintenance dose of 100â mg once daily (combined with other antimycobacterial drugs). Blood samples for PK analysis were collected on three occasions. A population PK model for clofazimine was developed and simulations were performed to assess the time to reach steady-state-like (target) concentrations for different dosing regimens. RESULTS: Twelve participants were included. The geometric mean peak and trough clofazimine concentrations after the 4-week loading phase were 0.87 and 0.50â mg/L, respectively. Adverse events were common, but mostly mild and none led to discontinuation of clofazimine. Our loading dose regimen reduced the predicted median time to target concentrations by 1.5â months compared to no loading dose (3.8 versus 5.3â months). Further time benefit was predicted with a 6-week loading dose regimen (1.4 versus 5.3â months). CONCLUSION: A 4-week loading dose regimen of 300â mg once daily reduced the time to target clofazimine concentrations and was safe and well-tolerated. Extending the loading phase to 6 weeks could further decrease the time to target concentrations. Using a loading dose of clofazimine is a feasible strategy to optimize treatment of NTM disease. CLINICAL TRIALS REGISTRATION: NCT05294146.
RESUMEN
Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
Asunto(s)
Citocromo P-450 CYP1A2 , Tuberculosis Pulmonar , Adulto , Humanos , Midazolam/uso terapéutico , Citocromo P-450 CYP2D6/metabolismo , Cafeína , Rifampin/uso terapéutico , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A/metabolismo , Dextrometorfano/uso terapéutico , Tolbutamida , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Omeprazol , Interacciones Farmacológicas , Tuberculosis Pulmonar/tratamiento farmacológico , Digoxina/uso terapéuticoRESUMEN
BACKGROUND: Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level. METHODS: We systematically searched MEDLINE, Embase and Web of Science (1990-2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration-time curve from 0 to 24â h post-dose (AUC0-24) and peak plasma concentration (C max) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0-24 and C max were assessed with linear mixed-effects models. RESULTS: Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0-24 were summarised for isoniazid (18.7 (95% CI 15.5-22.6)â h·mg·L-1), rifampicin (34.4 (95% CI 29.4-40.3)â h·mg·L-1), pyrazinamide (375.0 (95% CI 339.9-413.7)â h·mg·L-1) and ethambutol (8.0 (95% CI 6.4-10.0)â h·mg·L-1). Our multivariate models indicated that younger age (especially <2â years) and HIV-positive status were associated with lower AUC0-24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0-24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0-24 and slow acetylators had higher isoniazid AUC0-24 than intermediate acetylators. Determinants of C max were generally similar to those for AUC0-24. CONCLUSIONS: This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.
Asunto(s)
Antituberculosos , Isoniazida , Niño , Adolescente , Humanos , Preescolar , Antituberculosos/uso terapéutico , Isoniazida/uso terapéutico , Pirazinamida/uso terapéutico , Etambutol/uso terapéutico , Rifampin/uso terapéuticoRESUMEN
AIM: Delamanid is a novel drug for the treatment of drug-resistant tuberculosis, manufactured as 50-mg solid and 25-mg dispersible tablets. We evaluated the effects of dispersing the 50-mg tablet, focusing on the relative bioavailability. METHODS: Delamanid, 50-mg tablets administered dispersed vs swallowed whole, was investigated in a phase I, four-period, crossover study. Two of three dose strengths of delamanid (25, 50 or 100 mg) were given to healthy adult participants, in both whole and dispersed forms, with a 7-day washout period. Blood samples were collected over 168 h after each dose. Delamanid and its metabolite DM-6705 were analysed with a validated liquid chromatography tandem mass spectrometry assay. The pharmacokinetics of both analytes were analysed using nonlinear mixed-effect modelling. Palatability and acceptability were determined using a standardized questionnaire. RESULTS: Twenty-four participants completed the study. The bioavailability of dispersed tablets was estimated to be 107% of whole tablets, with a 90% confidence interval of 99.7-114%, fulfilling bioequivalence criteria. The two formulations were not significantly different regarding either bioavailability or its variability. Bioavailability increased at lower doses, by 34% (26-42%) at 50 mg and by 74% (64-86%) at 25 mg, relative to 100 mg. The majority of participants (93%) found the dispersed formulation acceptable in palatability across all delamanid doses. CONCLUSIONS: Dispersed 50-mg delamanid tablets have similar bioavailability to tablets swallowed whole in adult volunteers. This can be an option for children and other patients who cannot swallow whole tablets, improving access to treatment.
RESUMEN
Although tuberculosis (TB) is preventable and curable, the lengthy treatment (generally 6 months), poor patient adherence, high inter-individual variability in pharmacokinetics (PK), emergence of drug resistance, presence of comorbidities, and adverse drug reactions complicate TB therapy and drive the need for new drugs and/or regimens. Hence, new compounds are being developed, available drugs are repurposed, and the dosing of existing drugs is optimized, resulting in the largest drug development portfolio in TB history. This review highlights a selection of clinically available drug candidates that could be part of future TB regimens, including bedaquiline, delamanid, pretomanid, linezolid, clofazimine, optimized (high dose) rifampicin, rifapentine, and para-aminosalicylic acid. The review covers drug development history, preclinical data, PK, and current clinical development.
Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Linezolid/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológicoRESUMEN
Rationale: Carbapenems are recommended for treatment of drug-resistant tuberculosis. Optimal dosing remains uncertain. Objectives: To evaluate the 14-day bactericidal activity of meropenem, at different doses, with or without rifampin. Methods: Individuals with drug-sensitive pulmonary tuberculosis were randomized to one of four intravenous meropenem-based arms: 2 g every 8 hours (TID) (arm C), 2 g TID plus rifampin at 20 mg/kg once daily (arm D), 1 g TID (arm E), or 3 g once daily (arm F). All participants received amoxicillin/clavulanate with each meropenem dose. Serial overnight sputum samples were collected from baseline and throughout treatment. Median daily fall in colony-forming unit (CFU) counts per milliliter of sputum (solid culture) (EBACFU0-14) and increase in time to positive culture (TTP) in liquid media were estimated with mixed-effects modeling. Serial blood samples were collected for pharmacokinetic analysis on Day 13. Measurements and Main Results: Sixty participants enrolled. Median EBACFU0-14 counts (2.5th-97.5th percentiles) were 0.22 (0.12-0.33), 0.12 (0.057-0.21), 0.059 (0.033-0.097), and 0.053 (0.035-0.081); TTP increased by 0.34 (0.21-0.75), 0.11 (0.052-0.37), 0.094 (0.034-0.23), and 0.12 (0.04-0.41) (log10 h), for arms C-F, respectively. Meropenem pharmacokinetics were not affected by rifampin coadministration. Twelve participants withdrew early, many of whom cited gastrointestinal adverse events. Conclusions: Bactericidal activity was greater with the World Health Organization-recommended total daily dose of 6 g daily than with a lower dose of 3 g daily. This difference was only detectable with solid culture. Tolerability of intravenous meropenem, with amoxicillin/clavulanate, though, was poor at all doses, calling into question the utility of this drug in second-line regimens. Clinical trial registered with www.clinicaltrials.gov (NCT03174184).
Asunto(s)
Rifampin , Tuberculosis Pulmonar , Amoxicilina/uso terapéutico , Antituberculosos/uso terapéutico , Ácido Clavulánico/uso terapéutico , Quimioterapia Combinada , Humanos , Isoniazida , Meropenem/uso terapéutico , Rifampin/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológicoRESUMEN
BACKGROUND: Plasma bedaquiline clearance is reportedly more rapid with African ancestry. Our objective was to determine whether genetic polymorphisms explained between-individual variability in plasma clearance of bedaquiline, its M2 metabolite, and clofazimine in a cohort of patients treated for drug-resistant tuberculosis in South Africa. METHODS: Plasma clearance was estimated with nonlinear mixed-effects modeling. Associations between pharmacogenetic polymorphisms, genome-wide polymorphisms, and variability in clearance were examined using linear regression models. RESULTS: Of 195 cohort participants, 140 were evaluable for genetic associations. Among 21 polymorphisms selected based on prior genome-wide significant associations with any drug, rs776746 (CYP3A5∗3) was associated with slower clearance of bedaquiline (Pâ =â .0017) but not M2 (Pâ =â .25). CYP3A5∗3 heterozygosity and homozygosity were associated with 15% and 30% slower bedaquiline clearance, respectively. The lowest P value for clofazimine clearance was with VKORC1 rs9923231 (Pâ =â .13). In genome-wide analyses, the lowest P values for clearance of bedaquiline and clofazimine were with RFX4 rs76345012 (Pâ =â 6.4â ×â 10-7) and CNTN5 rs75285763 (Pâ =â 2.9â ×â 10-8), respectively. CONCLUSIONS: Among South Africans treated for drug-resistant tuberculosis, CYP3A5∗3 was associated with slower bedaquiline clearance. Different CYP3A5∗3 frequencies among populations may help explain the more rapid bedaquiline clearance reported in Africans. Associations with RFX4 and CNTN5 are likely by chance alone.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Clofazimina/uso terapéutico , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/uso terapéutico , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Estudio de Asociación del Genoma Completo , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Farmacogenética , Sudáfrica , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Vitamina K Epóxido ReductasasRESUMEN
BACKGROUND: In 2010, the World Health Organization (WHO) revised dosing guidelines for treatment of childhood tuberculosis. Our aim was to investigate first-line antituberculosis drug exposures under these guidelines, explore dose optimization using the current dispersible fixed-dose combination (FDC) tablet of rifampicin/isoniazid/pyrazinamide; 75/50/150 mg, and suggest a new FDC with revised weight bands. METHODS: Children with drug-susceptible tuberculosis in Malawi and South Africa underwent pharmacokinetic sampling while receiving first-line tuberculosis drugs as single formulations according the 2010 WHO recommended doses. Nonlinear mixed-effects modeling and simulation was used to design the optimal FDC and weight-band dosing strategy for achieving the pharmacokinetic targets based on literature-derived adult AUC0-24h for rifampicin (38.7-72.9), isoniazid (11.6-26.3), and pyrazinamide (233-429 mgâ ââ h/L). RESULTS: In total, 180 children (42% female; 13.9% living with human immunodeficiency virus [HIV]; median [range] age 1.9 [0.22-12] years; weight 10.7 [3.20-28.8] kg) were administered 1, 2, 3, or 4 FDC tablets (rifampicin/isoniazid/pyrazinamide 75/50/150 mg) daily for 4-8, 8-12, 12-16, and 16-25 kg weight bands, respectively. Rifampicin exposure (for weight and age) was up to 50% lower than in adults. Increasing the tablet number resulted in adequate rifampicin but relatively high isoniazid and pyrazinamide exposures. Administering 1, 2, 3, or 4 optimized FDC tablets (rifampicin/isoniazid/pyrazinamide 120/35/130 mg) to childrenâ <â 6, 6-13, 13-20. and 20-25 kg, and 0.5 tablet inâ <â 3-month-olds with immature metabolism, improved exposures to all 3 drugs. CONCLUSIONS: Current pediatric FDC doses resulted in low rifampicin exposures. Optimal dosing of all drugs cannot be achieved with the current FDCs. We propose a new FDC formulation and revised weight bands.
Asunto(s)
Pirazinamida , Tuberculosis , Adulto , Antituberculosos/uso terapéutico , Niño , Combinación de Medicamentos , Etambutol/uso terapéutico , Femenino , Humanos , Lactante , Isoniazida , Masculino , Estudios Prospectivos , Pirazinamida/farmacocinética , Rifampin/uso terapéutico , Comprimidos/uso terapéutico , Tuberculosis/tratamiento farmacológicoRESUMEN
Interruption of treatment is common in drug-resistant tuberculosis patients. Bedaquiline has a long terminal half-life; therefore, restarting after an interruption without a loading dose could increase the risk of suboptimal treatment outcome and resistance development. We aimed to identify the most suitable loading dose strategies for bedaquiline restart after an interruption. A model-based simulation study was performed. Pharmacokinetic profiles of bedaquiline and its metabolite M2 (associated with QT prolongation) were simulated for 5,000 virtual patients for different durations and starting points of treatment interruption. Weekly bedaquiline area under the concentration-time curve (AUC) and M2 maximum concentration (Cmax) deviation before interruption and after reloading were assessed to evaluate the efficacy and safety, respectively, of the reloading strategies. Bedaquiline weekly AUC and M2 Cmax deviation were mainly driven by the duration of interruption and only marginally by the starting point of interruption. For interruptions with a duration shorter than 2 weeks, no new loading dose is needed. For interruptions with durations between 2 weeks and 1 month, 1 month and 1 year, and longer than 1 year, reloading periods of 3 days, 1 week, and 2 weeks, respectively, are recommended. This reloading strategy results in an average bedaquiline AUC deviation of 1.88% to 5.98% compared with -16.4% to -59.8% without reloading for interruptions of 2 weeks and 1 year, respectively, without increasing M2 Cmax. This study presents easy-to-implement reloading strategies for restarting a patient on bedaquiline treatment after an interruption.
Asunto(s)
Síndrome de QT Prolongado , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacocinética , Antituberculosos/uso terapéutico , Diarilquinolinas/farmacocinética , Diarilquinolinas/uso terapéutico , Humanos , Síndrome de QT Prolongado/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológicoRESUMEN
A population pharmacokinetic analysis of delamanid and its major metabolite DM-6705 was conducted to characterize the pharmacokinetics of delamanid and DM-6705 in pediatric participants with multidrug-resistant tuberculosis (MDR-TB). Data from participants between the ages of 0.67 and 17 years, enrolled in 2 clinical trials, were utilized for the analysis. The final data set contained 634 delamanid and 706 DM-6705 valid plasma concentrations from 37 children. A transit model with three compartments best described the absorption of delamanid. Two-compartment models for each component with linear elimination were selected to characterize the dispositions of delamanid and DM-6705, respectively. The covariates included in the model were body weight on the apparent volume of distribution and apparent clearance (for both delamanid and DM-6705); formulation (dispersible versus film-coated tablet) on the mean absorption time; age, formulation, and dose on the bioavailability of delamanid; and age on the fraction of delamanid metabolized to DM-6705. Based on the simulations, doses for participants within different age/weight groups that result in delamanid exposure comparable to that in adults following the approved adult dose were calculated. By concentration-QTc (QTcB [QT corrected by Bazett's formula]) analysis, a significant positive correlation was detected with concentrations of DM-6705. However, the model-predicted upper bounds of the 90% confidence intervals of ΔQTc values were <10 ms at the simulated maximum concentration (Cmax) of DM-6705 following the administration of the maximum doses simulated. This suggests that the effect on the QT interval following the proposed dosing is unlikely to be clinically meaningful in children with MDR-TB who receive delamanid.
Asunto(s)
Nitroimidazoles , Tuberculosis Resistente a Múltiples Medicamentos , Adolescente , Adulto , Antituberculosos/farmacocinética , Antituberculosos/uso terapéutico , Niño , Preescolar , Humanos , Lactante , Nitroimidazoles/uso terapéutico , Oxazoles/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológicoRESUMEN
BACKGROUND: Current TB treatment for children is not optimized to provide adequate drug levels in TB lesions. Dose optimization of first-line antituberculosis drugs to increase exposure at the site of disease could facilitate more optimal treatment and future treatment-shortening strategies across the disease spectrum in children with pulmonary TB. OBJECTIVES: To determine the concentrations of first-line antituberculosis drugs at the site of disease in children with intrathoracic TB. METHODS: We quantified drug concentrations in tissue samples from 13 children, median age 8.6â months, with complicated forms of pulmonary TB requiring bronchoscopy or transthoracic surgical lymph node decompression in a tertiary hospital in Cape Town, South Africa. Pharmacokinetic models were used to describe drug penetration characteristics and to simulate concentration profiles for bronchoalveolar lavage, homogenized lymph nodes, and cellular and necrotic lymph node lesions. RESULTS: Isoniazid, rifampicin and pyrazinamide showed lower penetration in most lymph node areas compared with plasma, while ethambutol accumulated in tissue. None of the drugs studied was able to reach target concentration in necrotic lesions. CONCLUSIONS: Despite similar penetration characteristics compared with adults, low plasma exposures in children led to low site of disease exposures for all drugs except for isoniazid.
Asunto(s)
Isoniazida , Tuberculosis Pulmonar , Adulto , Antituberculosos/farmacocinética , Antituberculosos/uso terapéutico , Niño , Etambutol/farmacocinética , Humanos , Lactante , Isoniazida/farmacocinética , Pirazinamida/farmacocinética , Sudáfrica , Tuberculosis Pulmonar/tratamiento farmacológicoRESUMEN
BACKGROUND: High-dose rifampicin may improve outcomes of tuberculous meningitis (TBM). Little safety or pharmacokinetic (PK) data exist on high-dose rifampicin in human immunodeficiency virus (HIV) coinfection, and no cerebrospinal fluid (CSF) PK data exist from Africa. We hypothesized that high-dose rifampicin would increase serum and CSF concentrations without excess toxicity. METHODS: In this phase II open-label trial, Ugandan adults with suspected TBM were randomized to standard-of-care control (PO-10, rifampicin 10 mg/kg/day), intravenous rifampicin (IV-20, 20 mg/kg/day), or high-dose oral rifampicin (PO-35, 35 mg/kg/day). We performed PK sampling on days 2 and 14. The primary outcomes were total exposure (AUC0-24), maximum concentration (Cmax), CSF concentration, and grade 3-5 adverse events. RESULTS: We enrolled 61 adults, 92% were living with HIV, median CD4 count was 50 cells/µL (interquartile range [IQR] 46-56). On day 2, geometric mean plasma AUC0-24hr was 42.9·h mg/L with standard-of-care 10 mg/kg dosing, 249·h mg/L for IV-20 and 327·h mg/L for PO-35 (Pâ <â .001). In CSF, standard of care achieved undetectable rifampicin concentration in 56% of participants and geometric mean AUC0-24hr 0.27 mg/L, compared with 1.74 mg/L (95% confidence interval [CI] 1.2-2.5) for IV-20 and 2.17 mg/L (1.6-2.9) for PO-35 regimens (Pâ <â .001). Achieving CSF concentrations above rifampicin minimal inhibitory concentration (MIC) occurred in 11% (2/18) of standard-of-care, 93% (14/15) of IV-20, and 95% (18/19) of PO-35 participants. Higher serum and CSF levels were sustained at day 14. Adverse events did not differ by dose (Pâ =â .34). CONCLUSIONS: Current international guidelines result in sub-therapeutic CSF rifampicin concentration for 89% of Ugandan TBM patients. High-dose intravenous and oral rifampicin were safe and respectively resulted in exposures ~6- and ~8-fold higher than standard of care, and CSF levels above the MIC.
Asunto(s)
Infecciones por VIH , Tuberculosis Meníngea , Adulto , Antituberculosos/uso terapéutico , VIH , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Rifampin , Tuberculosis Meníngea/tratamiento farmacológico , UgandaRESUMEN
Clofazimine is classified as a WHO group B drug for the treatment of rifampin-resistant tuberculosis. QT prolongation, which is associated with fatal cardiac arrhythmias, is caused by several antitubercular drugs, including clofazimine, but there are no data quantifying the effect of clofazimine concentration on QT prolongation. Our objective was to describe the effect of clofazimine exposure on QT prolongation. Fifteen adults drug-susceptible tuberculosis patients received clofazimine monotherapy as 300 mg daily for 3 days, followed by 100 mg daily in one arm of a 2-week, multiarm early bactericidal activity trial in South Africa. Pretreatment Fridericia-corrected QT (QTcF) (105 patients, 524 electrocardiograms [ECGs]) and QTcFs from the clofazimine monotherapy arm matched with clofazimine plasma concentrations (199 ECGs) were interpreted with a nonlinear mixed-effects model. Clofazimine was associated with significant QT prolongation described by a maximum effect (Emax) function. We predicted clofazimine exposures using 100-mg daily doses and 2 weeks of loading with 200 and 300 mg daily, respectively. The expected proportions of patients with QTcF change from baseline above 30 ms (ΔQTcF > 30) were 2.52%, 11.6%, and 23.0% for 100-, 200-, and 300-mg daily doses, respectively. At steady state, the expected proportion with ΔQTcF of >30 ms was 23.7% and with absolute QTcF of >450 ms was 3.42% for all simulated regimens. The use of loading doses of 200 and 300 mg is not predicted to expose patients to an increased risk of QT prolongation, compared with the current standard treatment, and is, therefore, an alternative option for more quickly achieving therapeutic concentrations.
Asunto(s)
Clofazimina/efectos adversos , Síndrome de QT Prolongado , Tuberculosis , Adulto , Clofazimina/administración & dosificación , Electrocardiografía , Frecuencia Cardíaca , Humanos , Síndrome de QT Prolongado/inducido químicamente , Sudáfrica , Tuberculosis/tratamiento farmacológico , Adulto JovenRESUMEN
For Mycobacterium avium complex pulmonary disease (MAC-PD), current treatment regimens yield low cure rates. To obtain an evidence-based combination therapy, we assessed the in vitro activity of six drugs, namely, clarithromycin (CLR), rifampin (RIF), ethambutol (EMB), amikacin (AMK), clofazimine (CLO), and minocycline (MIN), alone and in combination, against Mycobacterium avium and studied the contributions of individual antibiotics to efficacy. The MICs of all antibiotics against M. avium ATCC 700898 were determined by broth microdilution. We performed kinetic time-kill assays of all single drugs and clinically relevant two-, three-, four-, and five-drug combinations against M. avium. Pharmacodynamic interactions of these combinations were assessed using area under the time-kill curve-derived effect size and Bliss independence. Adding a second drug yielded an average increase of the effect size (E) of 18.7% ± 32.9%, although antagonism was seen in some combinations. Adding a third drug showed a smaller increase in effect size (+12.2% ± 11.5%). The RIF-CLO-CLR (E of 102 log10 CFU/ml · day), RIF-AMK-CLR (E of 101 log10 CFU/ml · day), and AMK-MIN-EMB (E of 97.8 log10 CFU/ml · day) regimens proved more active than the recommended RIF-EMB-CLR regimen (E of 89.1 log10 CFU/ml · day). The addition of a fourth drug had little impact on effect size (+4.54% ± 3.08%). In vitro, several two- and three-drug regimens are as effective as the currently recommended regimen for MAC-PD. Adding a fourth drug to any regimen had little additional effect. In vitro, the most promising regimen would be RIF-AMK-macrolide or RIF-CLO-macrolide.
Asunto(s)
Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Claritromicina/farmacología , Claritromicina/uso terapéutico , Quimioterapia Combinada , Etambutol/farmacología , Etambutol/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológicoRESUMEN
Bedaquiline is recommended for the treatment of all patients with rifampin-resistant tuberculosis (RR-TB). Bedaquiline accumulates within cells, but its intracellular pharmacokinetics have not been characterized, which may have implications for dose optimization. We developed a novel assay using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the intracellular concentrations of bedaquiline and its primary metabolite M2 in patients with RR-TB in South Africa. Twenty-one participants were enrolled and underwent sparse sampling of plasma and peripheral blood mononuclear cells (PBMCs) at months 1, 2, and 6 of treatment and at 3 and 6 months after bedaquiline treatment completion. Intensive sampling was performed at month 2. We used noncompartmental analysis to describe plasma and intracellular exposures and a population pharmacokinetic model to explore the relationship between plasma and intracellular pharmacokinetics and the effects of key covariates. Bedaquiline concentrations from month 1 to month 6 of treatment ranged from 94.7 to 2,540 ng/ml in plasma and 16.2 to 5,478 ng/ml in PBMCs, and concentrations of M2 over the 6-month treatment period ranged from 34.3 to 496 ng/ml in plasma and 109.2 to 16,764 ng/ml in PBMCs. Plasma concentrations of bedaquiline were higher than those of M2, but intracellular concentrations of M2 were considerably higher than those of bedaquiline. In the pharmacokinetic modeling, we estimated a linear increase in the intracellular-plasma accumulation ratio for bedaquiline and M2, reaching maximum effect after 2 months of treatment. The typical intracellular-plasma ratios 1 and 2 months after start of treatment were 0.61 (95% confidence interval [CI]: 0.42 to 0.92) and 1.10 (95% CI: 0.74 to 1.63) for bedaquiline and 12.4 (95% CI: 8.8 to 17.8) and 22.2 (95% CI: 15.6 to 32.3) for M2. The intracellular-plasma ratios for both bedaquiline and M2 were decreased by 54% (95% CI: 24 to 72%) in HIV-positive patients compared to HIV-negative patients. Bedaquiline and M2 were detectable in PBMCs 6 months after treatment discontinuation. M2 accumulated at higher concentrations intracellularly than bedaquiline, supporting in vitro evidence that M2 is the main inducer of phospholipidosis.
Asunto(s)
Rifampin , Tuberculosis , Antituberculosos/uso terapéutico , Cromatografía Liquida , Diarilquinolinas , Humanos , Leucocitos Mononucleares , Rifampin/uso terapéutico , Espectrometría de Masas en Tándem , Tuberculosis/tratamiento farmacológicoRESUMEN
BACKGROUND: Accumulating data indicate that higher rifampicin doses are more effective and shorten tuberculosis (TB) treatment duration. This study evaluated the safety, tolerability, pharmacokinetics, and 7- and 14-day early bactericidal activity (EBA) of increasing doses of rifampicin. Here we report the results of the final cohorts of PanACEA HIGHRIF1, a dose escalation study in treatment-naive adult smear-positive patients with TB. METHODS: Patients received, in consecutive cohorts, 40 or 50â mg·kg-1 rifampicin once daily in monotherapy (day 1-7), supplemented with standard dose isoniazid, pyrazinamide and ethambutol between days 8 and 14. RESULTS: In the 40â mg·kg-1 cohort (n=15), 13 patients experienced a total of 36 adverse events during monotherapy, resulting in one treatment discontinuation. In the 50â mg·kg-1 cohort (n=17), all patients experienced adverse events during monotherapy, 93 in total; 11 patients withdrew or stopped study medication. Adverse events were mostly mild/moderate and tolerability rather than safety related, i.e. gastrointestinal disorders, pruritis, hyperbilirubinaemia and jaundice. There was a more than proportional increase in the rifampicin geometric mean area under the plasma concentration-time curve from time 0 to 12â h (AUC0-24â h) for 50â mg·kg-1 compared with 40â mg·kg-1; 571 (range 320-995) versus 387 (range 201-847)â mg·L-1·h, while peak exposures saw proportional increases. Protein-unbound exposure after 50â mg·kg-1 (11% (range 8-17%)) was comparable with lower rifampicin doses. Rifampicin exposures and bilirubin concentrations were correlated (Spearman's ρ=0.670 on day 3, p<0.001). EBA increased considerably with dose, with the highest seen after 50â mg·kg-1: 14-day EBA -0.427 (95% CI -0.500-â-0.355)â log10CFU·mL-1·day-1. CONCLUSION: Although associated with an increased bactericidal effect, the 50â mg·kg-1 dose was not well tolerated. Rifampicin at 40â mg·kg-1 was well tolerated and therefore selected for evaluation in a phase IIc treatment-shortening trial.
Asunto(s)
Rifampin , Tuberculosis Pulmonar , Adulto , Antituberculosos/efectos adversos , Humanos , Isoniazida , Pirazinamida , Tuberculosis Pulmonar/tratamiento farmacológicoRESUMEN
BACKGROUND: Rifampicin doses of 40 mg/kg in adults are safe and well tolerated, may shorten anti-TB treatment and improve outcomes, but have not been evaluated in children. OBJECTIVES: To characterize the pharmacokinetics and safety of high rifampicin doses in children with drug-susceptible TB. PATIENTS AND METHODS: The Opti-Rif trial enrolled dosing cohorts of 20 children aged 0-12 years, with incremental dose escalation with each subsequent cohort, until achievement of target exposures or safety concerns. Cohort 1 opened with a rifampicin dose of 15 mg/kg for 14 days, with a single higher dose (35 mg/kg) on day 15. Pharmacokinetic data from days 14 and 15 were analysed using population modelling and safety data reviewed. Incrementally increased rifampicin doses for the next cohort (days 1-14 and day 15) were simulated from the updated model, up to the dose expected to achieve the target exposure [235 mg/L·h, the geometric mean area under the concentration-time curve from 0 to 24 h (AUC0-24) among adults receiving a 35 mg/kg dose]. RESULTS: Sixty-two children were enrolled in three cohorts. The median age overall was 2.1 years (range = 0.4-11.7). Evaluated doses were â¼35 mg/kg (days 1-14) and â¼50 mg/kg (day 15) for cohort 2 and â¼60 mg/kg (days 1-14) and â¼75 mg/kg (day 15) for cohort 3. Approximately half of participants had an adverse event related to study rifampicin; none was grade 3 or higher. A 65-70 mg/kg rifampicin dose was needed in children to reach the target exposure. CONCLUSIONS: High rifampicin doses in children achieved target exposures and the doses evaluated were safe over 2 weeks.