Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alcohol Clin Exp Res ; 46(11): 1930-1943, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36394508

RESUMEN

In Dec. 2019-January 2020, a pneumonia illness originating in Wuhan, China, designated as coronavirus disease 2019 (COVID-19) was shown to be caused by a novel RNA coronavirus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). People with advanced age, male sex, and/or underlying health conditions (obesity, type 2 diabetes, cardiovascular disease, hypertension, chronic kidney disease, and chronic lung disease) are especially vulnerable to severe COVID-19 symptoms and death. These risk factors impact the immune system and are also associated with poor health, chronic illness, and shortened longevity. However, a large percent of patients without these known risk factors also develops severe COVID-19 disease that can result in death. Thus, there must exist risk factors that promote exaggerated inflammatory and immune response to the SARS-CoV-2 virus leading to death. One such risk factor may be alcohol misuse and alcohol use disorder because these can exacerbate viral lung infections like SARS, influenza, and pneumonia. Thus, it is highly plausible that alcohol misuse is a risk factor for either increased infection rate when individuals are exposed to SARS-CoV-2 virus and/or more severe COVID-19 in infected patients. Alcohol use is a well-known risk factor for lung diseases and ARDS in SARS patients. We propose that alcohol has three key pathogenic elements in common with other COVID-19 severity risk factors: namely, inflammatory microbiota dysbiosis, leaky gut, and systemic activation of the NLRP3 inflammasome. We also propose that these three elements represent targets for therapy for severe COVID-19.


Asunto(s)
Alcoholismo , COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Alcoholismo/epidemiología , SARS-CoV-2 , Factores de Riesgo , Etanol
2.
Alcohol Clin Exp Res ; 41(12): 2100-2113, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28992396

RESUMEN

BACKGROUND: Alcohol increases intestinal permeability to proinflammatory microbial products that promote liver disease, even after a period of sobriety. We sought to test the hypothesis that alcohol affects intestinal stem cells using an in vivo model and ex vivo organoids generated from jejunum and colon from mice fed chronic alcohol. METHODS: Mice were fed a control or an alcohol diet. Intestinal permeability, liver steatosis-inflammation, and stool short-chain fatty acids (SCFAs) were measured. Jejunum and colonic organoids and tissue were stained for stem cell, cell lineage, and apical junction markers with assessment of mRNA by PCR and RNA-seq. ChIP-PCR analysis was carried out for Notch1 using an antibody specific for acetylated histone 3. RESULTS: Alcohol-fed mice exhibited colonic (but not small intestinal) hyperpermeability, steatohepatitis, and decreased butyrate/total SCFA ratio in stool. Stem cell, cell lineage, and apical junction marker staining in tissue or organoids from jejunum tissue were not impacted by alcohol. Only chromogranin A (Chga) was increased in jejunum organoids by qPCR. However, colonic tissue and organoid staining exhibited an alcohol-induced significant decrease in cytokeratin 20+  (Krt20+) absorptive lineage enterocytes, a decrease in occludin and E-cadherin apical junction proteins, an increase in Chga, and an increase in the Lgr5 stem cell marker. qPCR revealed an alcohol-induced decrease in colonic organoid and tissue Notch1, Hes1, and Krt20 and increased Chga, supporting an alteration in stem cell fate due to decreased Notch1 expression. Colonic tissue ChIP-PCR revealed alcohol feeding suppressed Notch1 mRNA expression (via deacetylation of histone H3) and decreased Notch1 tissue staining. CONCLUSIONS: Data support a model for alcohol-induced colonic hyperpermeability via epigenetic effects on Notch1, and thus Hes1, suppression through a mechanism involving histone H3 deacetylation at the Notch1 locus. This decreased enterocyte and increased enteroendocrine cell colonic stem cell fate and decreased apical junctional proteins leading to hyperpermeability.


Asunto(s)
Colon/metabolismo , Colon/patología , Etanol/farmacología , Organoides/citología , Células Madre/citología , Células Madre/efectos de los fármacos , Animales , Cadherinas/metabolismo , Linaje de la Célula/efectos de los fármacos , Cromogranina A/metabolismo , Colon/fisiopatología , Ácidos Grasos/análisis , Hígado Graso/inducido químicamente , Heces/química , Yeyuno/metabolismo , Yeyuno/fisiopatología , Queratina-20/inmunología , Masculino , Ratones , Ocludina/metabolismo , Permeabilidad/efectos de los fármacos , Receptor Notch1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factor de Transcripción HES-1/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G192-201, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27198191

RESUMEN

Alcohol-induced intestinal hyperpermeability (AIHP) is a known risk factor for alcoholic liver disease (ALD), but only 20-30% of heavy alcoholics develop AIHP and ALD. The hypothesis of this study is that circadian misalignment would promote AIHP. We studied two groups of healthy subjects on a stable work schedule for 3 mo [day workers (DW) and night workers (NW)]. Subjects underwent two circadian phase assessments with sugar challenge to access intestinal permeability between which they drank 0.5 g/kg alcohol daily for 7 days. Sleep architecture by actigraphy did not differ at baseline or after alcohol between either group. After alcohol, the dim light melatonin onset (DLMO) in the DW group did not change significantly, but in the NW group there was a significant 2-h phase delay. Both the NW and DW groups had no change in small bowel permeability with alcohol, but only in the NW group was there an increase in colonic and whole gut permeability. A lower area under the curve of melatonin inversely correlated with increased colonic permeability. Alcohol also altered peripheral clock gene amplitude of peripheral blood mononuclear cells in CLOCK, BMAL, PER1, CRY1, and CRY2 in both groups, and inflammatory markers lipopolysaccharide-binding protein, LPS, and IL-6 had an elevated mesor at baseline in NW vs. DW and became arrhythmic with alcohol consumption. Together, our data suggest that central circadian misalignment is a previously unappreciated risk factor for AIHP and that night workers may be at increased risk for developing liver injury with alcohol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Ritmo Circadiano , Colon/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Admisión y Programación de Personal , Trastornos del Sueño del Ritmo Circadiano/complicaciones , Sueño , Tolerancia al Trabajo Programado , Adulto , Biomarcadores/sangre , Péptidos y Proteínas de Señalización del Ritmo Circadiano/sangre , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Colon/metabolismo , Colon/fisiopatología , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación/sangre , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatología , Melatonina/sangre , Persona de Mediana Edad , Permeabilidad , Trastornos del Sueño del Ritmo Circadiano/sangre , Trastornos del Sueño del Ritmo Circadiano/diagnóstico , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Factores de Tiempo , Adulto Joven
4.
PLoS Pathog ; 10(2): e1003829, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586144

RESUMEN

HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , ARN Ribosómico 16S/análisis , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Microbiota , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Am J Physiol Gastrointest Liver Physiol ; 308(12): G1004-11, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25907689

RESUMEN

Chronic heavy alcohol use is known to cause gut leakiness and alcoholic liver disease (ALD), but only 30% of heavy drinkers develop increased intestinal permeability and ALD. The hypothesis of this study was that disruption of circadian rhythms is a potential risk factor in actively drinking alcoholics for gut leakiness and endotoxemia. We studied 20 subjects with alcohol use disorder (AD) and 17 healthy controls (HC, 6 day workers, 11 night workers). Subjects wore a wrist actiwatch for 7 days and underwent a 24-h dim light phase assessment and urine collection for intestinal permeability. The AD group had significantly less total sleep time and increased fragmentation of sleep (P < 0.05). AD also had significantly lower plasma melatonin levels compared with the HC [mean area under the curve (AUC) 322.78 ± 228.21 vs. 568.75 ± 304.26 pg/ml, P = 0.03]. In the AD group, AUC of melatonin was inversely correlated with small bowel and colonic intestinal permeability (lactulose-to-mannitol ratio, r = -0.39, P = 0.03; urinary sucralose, r = -0.47, P = 0.01). Cosinor analysis of lipopolysaccharide-binding protein (marker of endotoxemia) and lipopolysaccharide every 4 h for 24 h in HC and AD subjects had a midline estimating statistic of rhythm of 5,026.15 ± 409.56 vs. 6,818.02 ± 628.78 ng/ml (P < 0.01) and 0.09 ± 0.03 vs. 0.15 ± 0.19 EU/ml (P < 0.05), respectively. We found plasma melatonin was significantly lower in the AD group, and lower melatonin levels correlated with increased intestinal permeability and a marker of endotoxemia. Our study suggests the suppression of melatonin in AD may promote gut leakiness and endotoxemia.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Endotoxemia/metabolismo , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Hepatopatías Alcohólicas/complicaciones , Melatonina/metabolismo , Proteínas de Fase Aguda/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Portadoras/metabolismo , Ritmo Circadiano/fisiología , Endotoxemia/etiología , Femenino , Humanos , Absorción Intestinal/fisiología , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Sueño/fisiología
6.
Clin Transl Gastroenterol ; 15(4): e00689, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334953

RESUMEN

INTRODUCTION: Only 20%-30% of individuals with alcohol use disorder (AUD) develop alcoholic liver disease (ALD). While the development of gut-derived endotoxemia is understood to be a required cofactor, increased intestinal permeability in ALD is not completely understood. METHODS: We recruited 178 subjects-58 healthy controls (HCs), 32 with ALD, 53 with AUD but no liver disease (ALC), and 35 with metabolic dysfunction-associated steatotic liver disease (MASLD). Intestinal permeability was assessed by a sugar cocktail as a percentage of oral dose. The permeability test was repeated after an aspirin challenge in a subset. RESULTS: Five-hour urinary lactulose/mannitol ratio (primarily representing small intestinal permeability) was not statistically different in HC, ALC, ALD, and MASLD groups ( P = 0.40). Twenty-four-hour urinary sucralose (representing whole gut permeability) was increased in ALD ( F = 5.3, P < 0.01) and distinguished ALD from ALC; 24-hour sucralose/lactulose ratio (primarily representing colon permeability) separated the ALD group ( F = 10.2, P < 0.01) from the MASLD group. After aspirin challenge, intestinal permeability increased in all groups and ALD had the largest increase. DISCUSSION: In a group of patients, we confirmed that (i) the ALD group has increased intestinal permeability compared with the HC, ALC, or MASLD group. In addition, because small bowel permeability (lactulose/mannitol ratio) is normal, the disruption of intestinal barrier seems to be primarily in the large intestine; (ii) decreased resiliency of intestinal barrier to injurious agents (such as NSAID) might be the mechanism for gut leak in subset of AUD who develop ALD.


Asunto(s)
Mucosa Intestinal , Lactulosa , Hepatopatías Alcohólicas , Manitol , Permeabilidad , Sacarosa/análogos & derivados , Humanos , Masculino , Hepatopatías Alcohólicas/metabolismo , Persona de Mediana Edad , Femenino , Lactulosa/orina , Lactulosa/administración & dosificación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Adulto , Manitol/orina , Manitol/administración & dosificación , Estudios de Casos y Controles , Aspirina/administración & dosificación , Absorción Intestinal/efectos de los fármacos , Sacarosa/administración & dosificación , Alcoholismo/complicaciones , Alcoholismo/metabolismo , Anciano , Funcion de la Barrera Intestinal
7.
Front Aging ; 5: 1352299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501032

RESUMEN

Introduction: Aging studies in humans and mice have played a key role in understanding the intestinal microbiome and an increased abundance of "inflammaging" Gram-negative (Gn) bacteria. The mechanisms underlying this inflammatory profile in the aging microbiome are unknown. We tested the hypothesis that an aging-related decrease in colonic crypt epithelial cell anti-microbial peptide (AMP) gene expression could promote colonic microbiome inflammatory Gn dysbiosis and inflammaging. Methods: As a model of aging, C57BL/6J mice fecal (colonic) microbiota (16S) and isolated colonic crypt epithelial cell gene expression (RNA-seq) were assessed at 2 months (mth) (human: 18 years old; yo), 15 mth (human: 50 yo), and 25 mth (human: 84 yo). Informatics examined aging-related microbial compositions, differential colonic crypt epithelial cell gene expressions, and correlations between colonic bacteria and colonic crypt epithelial cell gene expressions. Results: Fecal microbiota exhibited significantly increased relative abundances of pro-inflammatory Gn bacteria with aging. Colonic crypt epithelial cell gene expression analysis showed significant age-related downregulation of key AMP genes that repress the growth of Gn bacteria. The aging-related decrease in AMP gene expressions is significantly correlated with an increased abundance in Gn bacteria (dysbiosis), loss of colonic barrier gene expression, and senescence- and inflammation-related gene expression. Conclusion: This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression promotes increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes.

8.
Alcohol Clin Exp Res (Hoboken) ; 47(5): 908-918, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37526580

RESUMEN

BACKGROUND: Nurses and other first responders are at high risk of exposure to the SARS-CoV2 virus, and many have developed severe COVID-19 infection. A better understanding of the factors that increase the risk of infection after exposure to the virus could help to address this. Although several risk factors such as obesity, diabetes, and hypertension have been associated with an increased risk of infection, many first responders develop severe COVID-19 without established risk factors. As inflammation and cytokine storm are the primary mechanisms in severe COVID-19, other factors that promote an inflammatory state could increase the risk of COVID-19 in exposed individuals. Alcohol misuse and shift work with subsequent misaligned circadian rhythms are known to promote a pro-inflammatory state and thus could increase susceptibility to COVID-19. To test this hypothesis, we conducted a prospective, cross-sectional observational survey-based study in nurses using the American Nursing Association network. METHOD: We used validated structured questionnaires to assess alcohol consumption (the Alcohol Use Disorders Identification Test) and circadian typology or chronotype (the Munich Chronotype Questionnaire Shift -MCTQ-Shift). RESULTS: By latent class analysis (LCA), high-risk features of alcohol misuse were associated with a later chronotype, and binge drinking was greater in night shift workers. The night shift was associated with more than double the odds of COVID-19 infection of the standard shift (OR 2.67, 95% CI: 1.18 to 6.07). Binge drinkers had twice the odds of COVID-19 infection of those with low-risk features by LCA (OR: 2.08, 95% CI: 0.75 to 5.79). CONCLUSION: Working night shifts or binge drinking may be risk factors for COVID-19 infection among nurses. Understanding the mechanisms underlying these risk factors could help to mitigate the impact of COVID-19 on our at-risk healthcare workforce.

9.
Clin Transl Gastroenterol ; 14(2): e00549, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36730289

RESUMEN

INTRODUCTION: Chronotherapy is the timing of medication according to biological rhythms of the host to optimize drug efficacy and minimize toxicity. Efficacy and myelosuppression of azathioprine/6-mercaptopurine (AZA/6-MP) are correlated with the metabolite 6-thioguanine, while the metabolite 6-methylmercaptopurine correlates with hepatotoxicity. METHODS: This was a single-center, 10-week prospective crossover trial involving 26 participants with inactive inflammatory bowel disease (IBD) on a stable dose and time of AZA or 6-MP therapy. Participants were switched to the opposite delivery time (morning or evening) for 10 weeks, and metabolite measurements were at both time points. RESULTS: In the morning vs evening dosing, 6-thioguanine levels were 225.7 ± 155.1 vs 175.0 ± 106.9 ( P < 0.01), and 6-methylmercaptopurine levels were 825.1 ± 1,023.3 vs 2,395.3 ± 2,880.3 ( P < 0.01), with 69% (18 out of 26) of participants had better metabolite profiles in the morning. Participants with optimal dosing in the morning had an earlier chronotype by corrected midpoint of sleep. DISCUSSION: In the first study on a potential role of chronotherapy in IBD, we found (i) morning dosing of AZA or 6-MP resulted in more optimal metabolite profiles and (ii) host chronotype could help identify one-third of patients who would benefit from evening dosing. Circadian regulation of metabolic enzymes of AZA/6-MP activity in the liver is the likely cause of these differences. This pilot study confirms the need to incorporate chronotherapy in future multicenter clinical trials on IBD disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mercaptopurina , Humanos , Azatioprina , Cronoterapia , Estudios Cruzados , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mercaptopurina/uso terapéutico , Proyectos Piloto , Estudios Prospectivos , Tioguanina/uso terapéutico
10.
Bone ; 168: 116650, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36584784

RESUMEN

The circadian clock system regulates multiple metabolic processes, including bone metabolism. Previous studies have demonstrated that both central and peripheral circadian signaling regulate skeletal growth and homeostasis in mice. Disruption in central circadian rhythms has been associated with a decline in bone mineral density in humans and the global and osteoblast-specific disruption of clock genes in bone tissue leads to lower bone mass in mice. Gut physiology is highly sensitive to circadian disruption. Since the gut is also known to affect bone remodeling, we sought to test the hypothesis that circadian signaling disruption in colon epithelial cells affects bone. We therefore assessed structural, functional, and cellular properties of bone in 8 week old Ts4-Cre and Ts4-Cre;Bmal1fl/fl (cBmalKO) mice, where the clock gene Bmal1 is deleted in colon epithelial cells. Axial and appendicular trabecular bone volume was significantly lower in cBmalKO compared to Ts4-Cre 8-week old mice in a sex-dependent fashion, with male but not female mice showing the phenotype. Similarly, the whole bone mechanical properties were deteriorated in cBmalKO male mice. The tissue level mechanisms involved suppressed bone formation with normal resorption, as evidenced by serum markers and dynamic histomorphometry. Our studies demonstrate that colon epithelial cell-specific deletion of Bmal1 leads to failure to acquire trabecular and cortical bone in male mice.


Asunto(s)
Relojes Circadianos , Osteogénesis , Humanos , Animales , Masculino , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/genética , Células Epiteliales/metabolismo , Ratones Noqueados
11.
Inflamm Bowel Dis ; 29(3): 444-457, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36287037

RESUMEN

BACKGROUND: Disruption of central circadian rhythms likely mediated by changes in microbiota and a decrease in gut-derived metabolites like short chain fatty acids (SCFAs) negatively impacts colonic barrier homeostasis. We aimed to explore the effects of isolated peripheral colonic circadian disruption on the colonic barrier in a mouse model of colitis and explore the mechanisms, including intestinal microbiota community structure and function. METHODS: Colon epithelial cell circadian rhythms were conditionally genetically disrupted in mice: TS4Cre-BMAL1lox (cBMAL1KO) with TS4Cre as control animals. Colitis was induced through 5 days of 2% dextran sulfate sodium (DSS). Disease activity index and intestinal barrier were assessed, as were fecal microbiota and metabolites. RESULTS: Colitis symptoms were worse in mice with peripheral circadian disruption (cBMAL1KO). Specifically, the disease activity index and intestinal permeability were significantly higher in circadian-disrupted mice compared with control animals (TS4Cre) (P < .05). The worsening of colitis appears to be mediated, in part, through JAK (Janus kinase)-mediated STAT3 (signal transducer and activator of transcription 3), which was significantly elevated in circadian-disrupted (cBMAL1KO) mice treated with DSS (P < .05). Circadian-disrupted (cBMAL1KO) mice also had decreased SCFA metabolite concentrations and decreased relative abundances of SCFA-producing bacteria in their stool when compared with control animals (TS4Cre). CONCLUSIONS: Disruption of intestinal circadian rhythms in colonic epithelial cells promoted more severe colitis, increased inflammatory mediators (STAT3 [signal transducer and activator of transcription 3]), and decreased gut microbiota-derived SCFAs compared with DSS alone. Further investigation elucidating the molecular mechanisms behind these findings could provide novel circadian directed targets and strategies in the treatment of inflammatory bowel disease.


Disruption of peripheral circadian rhythms of the colon epithelium results in worse colitis and increased intestinal permeability in mice when given dextran sulfate sodium. This may be mediated through alterations in microbiota, butyrate levels, and STAT3.


Asunto(s)
Colitis , Factor de Transcripción STAT3 , Ratones , Animales , Sulfato de Dextran/efectos adversos , Factor de Transcripción STAT3/metabolismo , Colitis/inducido químicamente , Colon/metabolismo , Heces , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
12.
Inflamm Bowel Dis ; 28(12): 1872-1892, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35661212

RESUMEN

BACKGROUND: Ulcerative Colitis (UC) is a chronic, inflammatory disease, characterized by symptomatic periods (flare) interspersed with asymptomatic periods (remission). Evidence suggests that psychological stress can trigger flare. Studies have shown that mindfulness interventions (MI) reduce stress, foster more adaptive coping, and improve quality of life, but have been minimally used for UC patients. The objective of this study was to determine whether participation in an MI results in improvements in UC disease course and inflammatory cascades, mindfulness, perceived stress, and other psychological outcomes in inactive UC patients with limited or no exposure to past MI. METHODS: Participants were randomized to an 8-week MI or control group. Biological and psychological assessments were performed at baseline, post 8-week course, and at 6- and 12-months. RESULTS: Forty-three participants enrolled. The MI increased the state of mindfulness and mindfulness skills, decreased perceived stress and stress response in patients with inactive UC. The MI intervention significantly decreased the incidence of flare over 12 months (P < .05). None of the UC patients in the MI flared during 12 months, while 5 of 23 (22%) control group participants flared during the same period. CONCLUSIONS: MIs could be considered as adjuvant treatment for a subset of UC patients with high perceived stress and low state of mindfulness.The trial was registered at clinicaltrials.gov as NCT01491997.


Inactive ulcerative colitis patients were randomized to a mindfulness intervention or control group. Biological and psychological assessments were performed over 12 months. The intervention significantly decreased the incidence of flares, increased the state of mindfulness and mindfulness skills, and decreased perceived stress and the stress response.


Asunto(s)
Colitis Ulcerosa , Atención Plena , Humanos , Colitis Ulcerosa/terapia , Colitis Ulcerosa/psicología , Calidad de Vida , Estrés Psicológico/prevención & control , Estrés Psicológico/psicología , Progresión de la Enfermedad
13.
Curr Dev Nutr ; 6(2): nzab148, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198845

RESUMEN

BACKGROUND: Circadian rhythms coordinate multiple biological processes, and time of eating is an important entrainer of peripheral circadian clocks, including those in the gastrointestinal tract and liver. Whereas time of eating can be assessed through valid and reliable tools designed to measure nutrient intake (24-h recalls), currently there is no easily administered, valid, and reliable tool designed to specifically assess both time of food intake and sleep. OBJECTIVES: The objective of this study was to test the validity and reliability of 2 questionnaires developed to measure food and sleep-wake timing, the Food Timing Questionnaire (FTQ) and Food Timing Screener (FTS), and the agreement between these 2 tools. METHODS: The content validity of these tools was assessed by an expert panel of 10 registered dietitian nutritionists. Adult volunteers (n = 61) completed both tools to assess internal consistency and test-retest reliability. Criterion-related validity was determined through the association of FTQ and FTS with 2 valid instruments, the Automated Self-Administered 24-hour recall (ASA24®) Dietary Assessment tool and the Munich Chronotype Questionnaire. Agreement between the FTQ and FTS was tested by calculating the Pearson's correlations for both food and sleep-wake timing. RESULTS: The content validity indexes for both tools were >0.80, and internal consistency and test-retest reliability coefficients were >0.50 for all meals and sleep-wake times. Correlation coefficients were >0.40 between both tools and criterion measures of food intake and sleep except for snacks. Correlations between the FTQ and FTS for all eating events and sleep were >0.60 except for snack 1. CONCLUSIONS: Both the FTQ and FTS are valid and reliable instruments for meal timing and sleep. However, further psychometric testing in a more expansive and diverse sample will improve the ability of these tools to accurately assess food timing and sleep and their impact on health outcomes.

14.
Elife ; 112022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35072627

RESUMEN

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.


Asunto(s)
Colina/análogos & derivados , Ritmo Circadiano/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/metabolismo , Animales , Colina/administración & dosificación , Colina/metabolismo , Dieta Alta en Grasa , Inhibidores Enzimáticos/farmacología , Leptina/deficiencia , Liasas/efectos de los fármacos , Masculino , Metilaminas/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/microbiología
15.
Alcohol Clin Exp Res ; 35(7): 1305-14, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21463335

RESUMEN

BACKGROUND: Several studies have indicated that endotoxemia is the required co-factor for alcoholic steatohepatitis (ASH) that is seen in only about 30% of alcoholics. Recent studies have shown that gut leakiness that occurs in a subset of alcoholics is the primary cause of endotoxemia in ASH. The reasons for this differential susceptibility are not known. Since disruption of circadian rhythms occurs in some alcoholics and circadian genes control the expression of several genes that are involved in regulation of intestinal permeability, we hypothesized that alcohol induces intestinal hyperpermeability by stimulating expression of circadian clock gene proteins in the intestinal epithelial cells. METHODS: We used Caco-2 monolayers grown on culture inserts as an in vitro model of intestinal permeability and performed Western blotting, permeability, and siRNA inhibition studies to examine the role of Clock and Per2 circadian genes in alcohol-induced hyperpermeability. We also measured PER2 protein levels in intestinal mucosa of alcohol-fed rats with intestinal hyperpermeability. RESULTS: Alcohol, as low as 0.2%, induced time dependent increases in both Caco-2 cell monolayer permeability and in CLOCK and PER2 proteins. SiRNA specific inhibition of either Clock or Per2 significantly inhibited alcohol-induced monolayer hyperpermeability. Alcohol-fed rats with increased total gut permeability, assessed by urinary sucralose, also had significantly higher levels of PER2 protein in their duodenum and proximal colon than control rats. CONCLUSIONS: Our studies: (i) demonstrate a novel mechanism for alcohol-induced intestinal hyperpermeability through stimulation of intestinal circadian clock gene expression, and (ii) provide direct evidence for a central role of circadian genes in regulation of intestinal permeability.


Asunto(s)
Proteínas CLOCK/genética , Permeabilidad de la Membrana Celular/genética , Ritmo Circadiano/genética , Etanol/farmacología , Tracto Gastrointestinal/metabolismo , Absorción Intestinal/genética , Proteínas Circadianas Period/genética , Animales , Proteínas CLOCK/fisiología , Células CACO-2 , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Absorción Intestinal/efectos de los fármacos , Masculino , Proteínas Circadianas Period/fisiología , Ratas , Ratas Sprague-Dawley
16.
Digestion ; 84(3): 238-44, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21876358

RESUMEN

BACKGROUND: Alcohol consumption is a potential trigger for inflammatory bowel disease (IBD) flare because of alcohol-induced oxidative stress and its deleterious effects on gut barrier function. Additionally, we have recently shown that alcohol consumption is associated with more symptoms in IBD. However, it is not known whether moderate daily alcohol consumption can modify IBD disease activity. To test what effects alcohol may have on patients with IBD, we evaluated the effect of moderate daily red wine for 1 week on two factors associated with recurrent IBD disease activity: intestinal permeability and stool calprotectin. METHODS: To assess the effects of moderate daily alcohol consumption on intestinal permeability and inflammation, we recruited 21 patients: 8 with inactive ulcerative colitis (UC), 6 with inactive Crohn's disease (CD), and 7 healthy controls. All participants with IBD completed a validated questionnaire on disease activity (Crohn's disease activity index or ulcerative colitis clinical activity index), to confirm they had inactive disease. All subjects then underwent a baseline assessment that included a blood draw, urine collection after sugar challenge, and stool collection. Subjects then consumed 1-3 glasses of red wine a day for 1 week (approx. 0.4 g EtOH/kg), and repeated the three measures. RESULTS: No subjects flared during the study. Moderate alcohol consumption did not significantly change either clinical disease activity scores or C-reactive protein. In contrast to healthy subjects, daily consumption of red wine significantly (1) decreased stool calprotectin in IBD subjects from baseline (p = 0.001) and (2) increased intestinal permeability as measured by urinary lactulose/mannitol excretion (marker of small bowel permeability) in CD (p = 0.028) or urinary sucralose secretion (marker of large bowel permeability) in UC (p = 0.012). CONCLUSIONS: One week of moderate consumption of red wine in inactive IBD was associated with a significant decrease in stool calprotectin and a significant increase in intestinal permeability. Our data suggests that patients with inactive IBD who drink red wine daily may be at an increased long-term risk for disease relapse.


Asunto(s)
Colitis Ulcerosa/fisiopatología , Enfermedad de Crohn/fisiopatología , Vino/efectos adversos , Adulto , Proteína C-Reactiva/metabolismo , Colitis Ulcerosa/sangre , Colitis Ulcerosa/orina , Enfermedad de Crohn/sangre , Enfermedad de Crohn/orina , Heces/química , Femenino , Humanos , Mucosa Intestinal/metabolismo , Intestinos/fisiopatología , Lactulosa/orina , Complejo de Antígeno L1 de Leucocito/análisis , Complejo de Antígeno L1 de Leucocito/metabolismo , Masculino , Manitol/orina , Persona de Mediana Edad , Permeabilidad/efectos de los fármacos , Índice de Severidad de la Enfermedad , Sacarosa/análogos & derivados , Sacarosa/orina , Encuestas y Cuestionarios , Adulto Joven
17.
PLoS One ; 16(6): e0251604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086699

RESUMEN

BACKGROUND: Physiological circadian rhythms (CRs) are complex processes with 24-hour oscillations that regulate diverse biological functions. Chronic weekly light/dark (LD) shifting (CR disruption; CRD) in mice results in colonic hyperpermeability. However, the mechanisms behind this phenomenon are incompletely understood. One potential innovative in vitro method to study colonic CRs are colon organoids. The goals of this study were to utilize circadian clock gene Per2 luciferase reporter (Per2::Luc) mice to measure the effects of chronic LD shifting on colonic tissue circadian rhythmicity ex vivo and to determine if organoids made from shifted mice colons recapitulate the in vivo phenotype. METHODS: Non-shifted (NS) and shifted (S) BL6 Per2::Luc mice were compared after a 22-week experiment. NS mice had a standard 12h light/12h dark LD cycle throughout. S mice alternated 12h LD patterns weekly, with light from 6am-6pm one week followed by shifting light to 6pm-6am the next week for 22 weeks. Mice were tested for intestinal permeability while colon tissue and organoids were examined for CRs of bioluminescence and proteins of barrier function and cell fate. RESULTS: There was no absolute difference in NS vs. S 24h circadian period or phase. However, chronic LD shifting caused Per2::Luc S mice colon tissue to exhibit significantly greater variability in both the period and phase of Per2::Luc rhythms than NS mice colon tissue and organoids. Chronic LD shifting also resulted in increased colonic permeability of the Per2::Luc mice as well as decreased protein markers of intestinal permeability in colonic tissue and organoids from shifted Per2:Luc mice. CONCLUSIONS: Our studies support a model in which chronic central circadian disruption by LD shifting alters the circadian phenotype of the colon tissue and results in colon leakiness and loss of colonic barrier function. These CRD-related changes are stably expressed in colon stem cell derived organoids from CRD mice.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Colon/fisiopatología , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Humanos , Intestinos/fisiopatología , Luciferasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/genética , Actividad Motora/fisiología , Proteínas Circadianas Period/genética , Permeabilidad , Fotoperiodo , Núcleo Supraquiasmático/fisiopatología
18.
Front Med (Lausanne) ; 8: 770491, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35265631

RESUMEN

Patients with inflammatory bowel disease (IBD)-Crohn's disease (CD), and ulcerative colitis (UC), have poor sleep quality. Sleep and multiple immunologic and gastrointestinal processes in the body are orchestrated by the circadian clock, and we recently reported that a later category or chronotype of the circadian clock was associated with worse IBD specific outcomes. The goal of this study was to determine if circadian misalignment by rest-activity cycles is associated with markers of aggressive disease, subclinical inflammation, and dysbiosis in IBD. A total of 42 patients with inactive but biopsy-proven CD or UC and 10 healthy controls participated in this prospective cohort study. Subjects were defined as having an aggressive IBD disease history (steroid dependence, use of biologic or immunomodulator, and/or surgery) or non-aggressive history. All participants did two weeks of wrist actigraphy, followed by measurement of intestinal permeability and stool microbiota. Wrist actigraphy was used to calculate circadian markers of rest-activity- interdaily stability (IS), intradaily variability (IV), and relative amplitude (RA). Aggressive IBD history was associated with decrease rest-activity stability (IS) and increased fragmentation compared to non-aggressive IBD and health controls at 0.39 ±.15 vs. 0.51 ± 0.10 vs. 0.55 ± 0.09 (P < 0.05) and 0.83 ± 0.20 vs. 0.72 ± 0.14 (P < 0.05) but not HC at 0.72 ± 0.14 (P = 0.08); respectively. There was not a significant difference in RA by IBD disease history. Increased intestinal permeability and increased TNF-α levels correlated with an increased rest activity fragmentation (IV) at R = 0.35, P < 0.05 and R = 0.37, P < 0.05, respectively; and decreased rest-activity amplitude (RA) was associated with increased stool calprotectin at R = 0.40, P < 0.05. Analysis of intestinal microbiota showed a significant decrease in commensal butyrate producing taxa and increased pro-inflammatory bacteria with disrupted rest-activity cycles. In this study, different components of circadian misalignment by rest-activity cycles were associated with a more aggressive IBD disease history, increased intestinal permeability, stool calprotectin, increased pro-inflammatory cytokines, and dysbiosis. Wrist activity allows for an easy non-invasive assessment of circadian activity which may be an important biomarker of inflammation in IB.

20.
Transl Res ; 221: 97-109, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376406

RESUMEN

Microbiota derived short chain fatty acids (SCFAs) are produced by fermentation of nondigestible fiber, and are a key component in intestinal barrier homeostasis. Since the microbiome has diurnal fluctuations, we hypothesized that SCFAs in humans have a diurnal rhythm and their rhythmicity would be impacted by the host central circadian misalignment (night shift work) which would make intestinal barrier more susceptible to disruption by alcohol. To test this hypothesis, we studied 3 groups of subjects: patients with alcohol use disorder, but no liver disease (AD), healthy day workers (DW), and night workers (NW). All subjects were studied at baseline and then in DW and NW subjects after moderate daily alcohol (0.5 g/kg) for 7 days. Gut-derived plasma SCFAs showed a significant circadian oscillation by cosinor analysis in DW; however, SCFA in the AD and NW subjects lost 24-hour rhythmicity. Decrease in SCFA correlated with increased colonic permeability. Both chronic and moderate alcohol consumption for 1 week caused circadian disruption based on wrist actigraphy and urinary melatonin. Our study shows that (1) gut-derived plasma SCFAs have a diurnal rhythm in humans that is impacted by the central clock of the host; (2) moderate alcohol suppresses SCFAs which was associated with increased colonic permeability; and (3) less invasive urinary 6-SM correlated and rest-activity actigraphy correlated with plasma melatonin. Future studies are needed to examine the role circadian misalignment on gut derived SCFAs as possible mechanism for loss of intestinal barrier resiliency to injurious agents like alcohol.


Asunto(s)
Consumo de Bebidas Alcohólicas , Ritmo Circadiano , Ácidos Grasos Volátiles/metabolismo , Mucosa Intestinal/fisiopatología , Tolerancia al Trabajo Programado , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA