Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(2): 413-25, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23582329

RESUMEN

Here, we demonstrate that the fractalkine (FKN)/CX3CR1 system represents a regulatory mechanism for pancreatic islet ß cell function and insulin secretion. CX3CR1 knockout (KO) mice exhibited a marked defect in glucose and GLP1-stimulated insulin secretion, and this defect was also observed in vitro in isolated islets from CX3CR1 KO mice. In vivo administration of FKN improved glucose tolerance with an increase in insulin secretion. In vitro treatment of islets with FKN increased intracellular Ca(2+) and potentiated insulin secretion in both mouse and human islets. The KO islets exhibited reduced expression of a set of genes necessary for the fully functional, differentiated ß cell state, whereas treatment of wild-type (WT) islets with FKN led to increased expression of these genes. Lastly, expression of FKN in islets was decreased by aging and high-fat diet/obesity, suggesting that decreased FKN/CX3CR1 signaling could be a mechanism underlying ß cell dysfunction in type 2 diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Quimiocina/metabolismo , Transducción de Señal , Adulto , Envejecimiento , Animales , Receptor 1 de Quimiocinas CX3C , Cadáver , Quimiocina CX3CL1/administración & dosificación , Quimiocina CX3CL1/metabolismo , Dieta Alta en Grasa , Expresión Génica , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Receptores de Quimiocina/genética
2.
Adv Exp Med Biol ; 1415: 435-441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440069

RESUMEN

Metabolism is adapted to meet energetic needs. Based on the amount of ATP required to maintain plasma membrane potential, photoreceptor energy demands must be high. The available evidence suggests that photoreceptors primarily generate metabolic energy through aerobic glycolysis, though this evidence is based primarily on protein expression and not measurement of metabolic flux. Aerobic glycolysis can be validated by measuring flux of glucose to lactate. Aerobic glycolysis is also inefficient and thus an unexpected adaptation for photoreceptors to make. We measured metabolic rates to determine the energy-generating pathways that support photoreceptor metabolism. We found that photoreceptors indeed perform aerobic glycolysis and this is associated with mitochondrial uncoupling.


Asunto(s)
Glucólisis , Células Fotorreceptoras , Células Fotorreceptoras/metabolismo , Mitocondrias/metabolismo , Ácido Láctico/metabolismo , Metabolismo Energético , Glucosa/metabolismo
3.
Magn Reson Chem ; 61(12): 718-727, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36882950

RESUMEN

Investigation of mitochondrial metabolism is gaining increased interest owing to the growing recognition of the role of mitochondria in health and numerous diseases. Studies of isolated mitochondria promise novel insights into the metabolism devoid of confounding effects from other cellular organelles such as cytoplasm. This study describes the isolation of mitochondria from mouse skeletal myoblast cells (C2C12) and the investigation of live mitochondrial metabolism in real-time using isotope tracer-based NMR spectroscopy. [3-13 C1 ]pyruvate was used as the substrate to monitor the dynamic changes of the downstream metabolites in mitochondria. The results demonstrate an intriguing phenomenon, in which lactate is produced from pyruvate inside the mitochondria and the results were confirmed by treating mitochondria with an inhibitor of mitochondrial pyruvate carrier (UK5099). Lactate is associated with health and numerous diseases including cancer and, to date, it is known to occur only in the cytoplasm. The insight that lactate is also produced inside mitochondria opens avenues for exploring new pathways of lactate metabolism. Further, experiments performed using inhibitors of the mitochondrial respiratory chain, FCCP and rotenone, show that [2-13 C1 ]acetyl coenzyme A, which is produced from [3-13 C1 ]pyruvate and acts as a primary substrate for the tricarboxylic acid cycle in mitochondria, exhibits a remarkable sensitivity to the inhibitors. These results offer a direct approach to visualize mitochondrial respiration through altered levels of the associated metabolites.


Asunto(s)
Mitocondrias , Ácido Pirúvico , Ratones , Animales , Mitocondrias/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo
4.
Int J Exp Pathol ; 103(4): 140-148, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35246889

RESUMEN

Islet autoantibodies, including autoantibodies directed against the 65kDa isoform of glutamate decarboxylase (GAD65Ab), are present in the majority of patients with newly diagnosed type 1 diabetes (T1D). Whereas these autoantibodies are historically viewed as an epiphenomenon of the autoimmune response with no significant pathogenic function, we consider in this study the possibility that they impact the major islet function, namely glucose-stimulated insulin secretion. Two human monoclonal GAD65Ab (GAD65 mAb) (b78 and b96.11) were investigated for uptake by live rat beta cells, subcellular localization and their effect on glucose-stimulated insulin secretion. The GAD65 mAbs were internalized by live pancreatic beta cells, where they localized to subcellular structures in an epitope-specific manner. Importantly, GAD65 mAb b78 inhibited, while GAD65 mAb b96.11 enhanced, glucose-stimulated insulin secretion (GSIS). These opposite effects on GSIS rule out non-specific effects of the antibodies and suggest that internalization of the antibody leads to epitope-specific interaction with intracellular machinery regulating insulin granule release. The most likely explanation for the alteration of GSIS by GAD65 Abs is via changes in GABA release due to inhibition or change in GAD65 enzyme activity. This is the first report indicating an active role of GAD65Ab in the pathogenesis of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Glutamato Descarboxilasa , Animales , Anticuerpos Monoclonales/farmacología , Autoanticuerpos/farmacología , Epítopos , Glucosa/farmacología , Glutamato Descarboxilasa/química , Glutamato Descarboxilasa/metabolismo , Secreción de Insulina , Ratas
5.
J Biol Chem ; 291(9): 4698-710, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26677218

RESUMEN

Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5'-GMP, ribose-5-phosphate, ketone bodies, and purines.


Asunto(s)
Señalización del Calcio/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Proteínas del Ojo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Fototransducción , Retina/efectos de la radiación , Transducina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/metabolismo , Ciclo del Ácido Cítrico/efectos de la radiación , GMP Cíclico/metabolismo , Transporte de Electrón/efectos de la radiación , Proteínas del Ojo/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Glucólisis/efectos de la radiación , Proteínas de Unión al GTP Heterotriméricas/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Luz , Metaboloma/efectos de la radiación , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Consumo de Oxígeno/efectos de la radiación , Retina/enzimología , Retina/metabolismo , Técnicas de Cultivo de Tejidos , Transducina/genética
6.
Biochem J ; 473(23): 4443-4456, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27729543

RESUMEN

A real-time method to measure intracellular hydrogen peroxide (H2O2) would be very impactful in characterizing rapid changes that occur in physiologic and pathophysiologic states. Current methods do not provide the sensitivity, specificity and spatiotemporal resolution needed for such experiments on intact cells. We developed the use of HyPer, a genetic indicator for H2O2 that can be expressed in the cytosol (cyto-HyPer) or the mitochondria (mito-HyPer) of live cells. INS-1 cells or islets were permeabilized and the cytosolic HyPer signal was a linear function of extracellular H2O2, allowing fluorescent cyto-HyPer signals to be converted into H2O2 concentrations. Glucose increased cytosolic H2O2, an effect that was suppressed by overexpression of catalase. Large perturbations in pH can influence the HyPer signal, but inclusion of HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid] in the perfusate prevented pH changes, but did not affect glucose-induced cyto-HyPer signals, suggesting that this effect is largely pH-independent. Using the assay, two fundamental questions were addressed. Knockdown of superoxide dismutase 2 (SOD2), the mitochondrial form of SOD, completely suppressed glucose-induced H2O2 Furthermore, glucose also induced mitochondrial superoxide and H2O2 production, which preceded the appearance of cytosolic H2O2 Therefore, glucose-induced H2O2 largely originated from mitochondria. Finally, the glucose-induced HyPer signal was less than 1/20th of that induced by toxic levels of H2O2 Overall, the use of HyPer for real-time imaging allowed resolution of acute changes in intracellular levels of H2O2 and will have great utility for islet studies involving mechanisms of H2O2-mediated signaling and oxidative stress.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Catalasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Insulina/metabolismo , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo , Consumo de Oxígeno , Propidio/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
7.
Stem Cells ; 33(7): 2306-19, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25919237

RESUMEN

Neural activity is tightly coupled to energy consumption, particularly sugars such as glucose. However, we find that, unlike mature neurons and astrocytes, neural stem/progenitor cells (NSPCs) do not require glucose to sustain aerobic respiration. NSPCs within the adult subventricular zone (SVZ) express enzymes required for fatty acid oxidation and show sustained increases in oxygen consumption upon treatment with a polyunsaturated fatty acid. NSPCs also demonstrate sustained decreases in oxygen consumption upon treatment with etomoxir, an inhibitor of fatty acid oxidation. In addition, etomoxir decreases the proliferation of SVZ NSPCs without affecting cellular survival. Finally, higher levels of neurogenesis can be achieved in aged mice by ectopically expressing proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), a factor that increases cellular aerobic capacity by promoting mitochondrial biogenesis and metabolic gene transcription. Regulation of metabolic fuel availability could prove a powerful tool in promoting or limiting cellular proliferation in the central nervous system. Stem Cells 2015;33:2306-2319.


Asunto(s)
Ácidos Grasos/metabolismo , Células-Madre Neurales/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Ventrículos Laterales , Ratones
8.
J Biol Chem ; 289(27): 19110-9, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24841202

RESUMEN

The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.


Asunto(s)
Señalización del Calcio , Citocromos c/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Animales , Señalización del Calcio/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Ayuno , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Técnicas In Vitro , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Cetoácidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
9.
J Biol Chem ; 288(50): 36129-40, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24187136

RESUMEN

Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing (13)C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia.


Asunto(s)
Ácido Aspártico/metabolismo , Ácido Glutámico/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Purinonas/farmacología , Ácido Pirúvico/metabolismo , Retina/citología , Animales , Transporte Biológico/efectos de los fármacos , Encéfalo/citología , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolómica , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Oxígeno/metabolismo
10.
Diabetes ; 73(6): 849-855, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38768365

RESUMEN

The canonical model of glucose-induced increase in insulin secretion involves the metabolism of glucose via glycolysis and the citrate cycle, resulting in increased ATP synthesis by the respiratory chain and the closure of ATP-sensitive K+ (KATP) channels. The resulting plasma membrane depolarization, followed by Ca2+ influx through L-type Ca2+ channels, then induces insulin granule fusion. Merrins and colleagues have recently proposed an alternative model whereby KATP channels are controlled by pyruvate kinase, using glycolytic and mitochondrial phosphoenolpyruvate (PEP) to generate microdomains of high ATP/ADP immediately adjacent to KATP channels. This model presents several challenges. First, how mitochondrially generated PEP, but not ATP produced abundantly by the mitochondrial F1F0-ATP synthase, can gain access to the proposed microdomains is unclear. Second, ATP/ADP fluctuations imaged immediately beneath the plasma membrane closely resemble those in the bulk cytosol. Third, ADP privation of the respiratory chain at high glucose, suggested to drive alternating, phased-locked generation by mitochondria of ATP or PEP, has yet to be directly demonstrated. Finally, the approaches used to explore these questions may be complicated by off-target effects. We suggest instead that Ca2+ changes, well known to affect both ATP generation and consumption, likely drive cytosolic ATP/ADP oscillations that in turn regulate KATP channels and membrane potential. Thus, it remains to be demonstrated that a new model is required to replace the existing, mitochondrial bioenergetics-based model.


Asunto(s)
Glucosa , Células Secretoras de Insulina , Canales KATP , Células Secretoras de Insulina/metabolismo , Canales KATP/metabolismo , Glucosa/metabolismo , Humanos , Animales , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Insulina/metabolismo , Adenosina Difosfato/metabolismo , Modelos Biológicos , Secreción de Insulina/fisiología
11.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37461469

RESUMEN

Purpose: Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design: We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results: We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion: This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.

12.
Mol Cancer Ther ; 23(7): 973-994, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507737

RESUMEN

Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Nonspecific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small-molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell-cycle, metabolic, and enzymatic assays were used to demonstrate their mechanism of action. A human patient-derived xenograft model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. We demonstrate a new class of small-molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.


Asunto(s)
Proliferación Celular , Glucólisis , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Humanos , Animales , Ratones , Glucólisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
13.
J Biol Chem ; 287(24): 19816-26, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22528485

RESUMEN

Normal glucose-stimulated insulin secretion is dependent on interactions between neighboring ß cells. Elucidation of the reasons why this cell-to-cell contact is essential will probably yield critical insights into ß cell maturation and function. In the central nervous system, transcellular protein interactions (i.e. interactions between proteins on the surfaces of different cells) involving neuroligins are key mediators of synaptic functional development. We previously demonstrated that ß cells express neuroligin-2 and that insulin secretion is affected by changes in neuroligin-2 expression. Here we show that the effect of neuroligin-2 on insulin secretion is mediated by transcellular interactions. Neuroligin-2 binds with nanomolar affinity to a partner on the ß cell surface and contributes to the increased insulin secretion brought about by ß cell-to-ß cell contact. It does so in a manner seemingly independent of interactions with neurexin, a known binding partner. As in the synapse, transcellular neuroligin-2 interactions enhance the functioning of the submembrane exocytic machinery. Also, as in the synapse, neuroligin-2 clustering is important. Neuroligin-2 in soluble form, rather than presented on a cell surface, decreases insulin secretion by rat islets and MIN-6 cells, most likely by interfering with endogenous neuroligin interactions. Prolonged contact with neuroligin-2-expressing cells increases INS-1 ß cell proliferation and insulin content. These results extend the known parallels between the synaptic and ß cell secretory machineries to extracellular interactions. Neuroligin-2 interactions are one of the few transcellular protein interactions thus far identified that directly enhance insulin secretion. Together, these results indicate a significant role for transcellular neuroligin-2 interactions in the establishment of ß cell function.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Comunicación Celular/fisiología , Proliferación Celular , Regulación de la Expresión Génica/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Células HEK293 , Humanos , Secreción de Insulina , Células Secretoras de Insulina/citología , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley
14.
J Biol Chem ; 287(13): 10379-10393, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22287546

RESUMEN

Excess glucose and free fatty acids delivered to adipose tissue causes local inflammation, which contributes to insulin resistance. Glucose and palmitate generate reactive oxygen species (ROS) in adipocytes, leading to monocyte chemotactic factor gene expression. Docosahexaenoate (DHA) has the opposite effect. In this study, we evaluated the potential sources of ROS in the presence of excess nutrients. Differentiated 3T3-L1 adipocytes were exposed to palmitate and DHA (250 µM) in either 5 or 25 mM glucose to evaluate the relative roles of mitochondrial electron transport and NADPH oxidases (NOX) as sources of ROS. Excess glucose and palmitate did not increase mitochondrial oxidative phosphorylation. However, glucose exposure increased glycolysis. Of the NOX family members, only NOX4 was expressed in adipocytes. Moreover, its activity was increased by excess glucose and palmitate and decreased by DHA. Silencing NOX4 inhibited palmitate- and glucose-stimulated ROS generation and monocyte chemotactic factor gene expression. NADPH, a substrate for NOX, and pentose phosphate pathway activity increased with glucose but not palmitate and decreased with DHA exposure. Inhibition of the pentose phosphate pathway by glucose-6-phosphate dehydrogenase inhibitors and siRNA suppressed ROS generation and monocyte chemotactic factor gene expression induced by both glucose and palmitate. Finally, both high glucose and palmitate induced NOX4 translocation into lipid rafts, effects that were blocked by DHA. Excess glucose and palmitate generate ROS via NOX4 rather than by mitochondrial oxidation in cultured adipocytes. NOX4 is regulated by both NADPH generated in the PPP and translocation of NOX4 into lipid rafts, leading to expression of monocyte chemotactic factors.


Asunto(s)
Adipocitos/metabolismo , Microdominios de Membrana/enzimología , Proteínas Quimioatrayentes de Monocitos/biosíntesis , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células 3T3-L1 , Adipocitos/citología , Animales , Ácidos Docosahexaenoicos/farmacología , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Microdominios de Membrana/genética , Ratones , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Quimioatrayentes de Monocitos/genética , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Ácido Palmítico/farmacología , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Edulcorantes/metabolismo , Edulcorantes/farmacología
15.
Proc Natl Acad Sci U S A ; 107(19): 8599-604, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20445106

RESUMEN

Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor's synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons.


Asunto(s)
Oscuridad , Metabolismo Energético/fisiología , Retina/fisiología , Animales , Creatina Quinasa/antagonistas & inhibidores , Creatina Quinasa/metabolismo , Dinitrofluorobenceno/farmacología , Electrorretinografía , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/efectos de la radiación , Glutamatos/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/efectos de la radiación , Modelos Biológicos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/enzimología , Terminales Presinápticos/efectos de la radiación , Inhibidores de Proteínas Quinasas/farmacología , Retina/efectos de los fármacos , Retina/enzimología , Retina/efectos de la radiación , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Segmento Externo de las Células Fotorreceptoras Retinianas/efectos de los fármacos , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/efectos de la radiación , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/enzimología , Vasos Retinianos/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación , Urodelos/fisiología
16.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014068

RESUMEN

Genetic polymorphisms in nuclear respiratory factor-1 ( NRF1 ), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with ß-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic ß-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in ß- cells. Expression of NRF1 target genes Tfam , T@1m and T@2m , and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in ß-cells was sufficient to restore ß-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of ß-cell function and establishes a model to study the interplay between regulators of bi- genomic gene transcription in diabetes.

17.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778398

RESUMEN

Aging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function. We measured the response to ADP stimulation in young and old muscle mitochondria with ELAM treatment, in vivo heart and muscle function, and compared protein abundance, phosphorylation, and S-glutathionylation of ADP/ATP pathway proteins. ELAM treatment increased ADP sensitivity in old muscle mitochondria by increasing uptake of ADP through the ANT and rescued muscle force and heart systolic function. Protein abundance in the ADP/ATP transport and synthesis pathway was unchanged, but ELAM treatment decreased protein s-glutathionylation incuding of ANT. Mitochondrial ADP sensitivity is rapidly modifiable. This research supports the hypothesis that ELAM improves ANT function in aging and links mitochondrial ADP sensitivity to physiological function.

18.
Geroscience ; 45(6): 3529-3548, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37462785

RESUMEN

Aging muscle experiences functional decline in part mediated by impaired mitochondrial ADP sensitivity. Elamipretide (ELAM) rapidly improves physiological and mitochondrial function in aging and binds directly to the mitochondrial ADP transporter ANT. We hypothesized that ELAM improves ADP sensitivity in aging leading to rescued physiological function. We measured the response to ADP stimulation in young and old muscle mitochondria with ELAM treatment, in vivo heart and muscle function, and compared protein abundance, phosphorylation, and S-glutathionylation of ADP/ATP pathway proteins. ELAM treatment increased ADP sensitivity in old muscle mitochondria by increasing uptake of ADP through the ANT and rescued muscle force and heart systolic function. Protein abundance in the ADP/ATP transport and synthesis pathway was unchanged, but ELAM treatment decreased protein s-glutathionylation incuding of ANT. Mitochondrial ADP sensitivity is rapidly modifiable. This research supports the hypothesis that ELAM improves ANT function in aging and links mitochondrial ADP sensitivity to physiological function. ELAM binds directly to ANT and ATP synthase and ELAM treatment improves ADP sensitivity, increases ATP production, and improves physiological function in old muscles. ADP (adenosine diphosphate), ATP (adenosine triphosphate), VDAC (voltage-dependent anion channel), ANT (adenine nucleotide translocator), H+ (proton), ROS (reactive oxygen species), NADH (nicotinamide adenine dinucleotide), FADH2 (flavin adenine dinucleotide), O2 (oxygen), ELAM (elamipretide), -SH (free thiol), -SSG (glutathionylated protein).


Asunto(s)
Adenosina Trifosfato , Mitocondrias , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Péptidos/farmacología , Péptidos/metabolismo
19.
J Vis Exp ; (197)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37522735

RESUMEN

Many in vitro models used to investigate tissue function and cell biology require a flow of media to provide adequate oxygenation and optimal cell conditions required for the maintenance of function and viability. Toward this end, we have developed a multi-channel flow culture system to maintain tissue and cells in culture and continuously assess function and viability by either in-line sensors and/or collection of outflow fractions. The system combines 8-channel, continuous optical sensing of oxygen consumption rate with a built-in fraction collector to simultaneously measure production rates of metabolites and hormone secretion. Although it is able to maintain and assess a wide range of tissue and cell models, including islets, muscle, and hypothalamus, here we describe its operating principles and the experimental preparations/protocols that we have used to investigate bioenergetic regulation of isolated mouse retina, mouse retinal pigment epithelium (RPE)-choroid-sclera, and cultured human RPE cells. Innovations in the design of the system, such as pumpless fluid flow, have produced a greatly simplified operation of a multi-channel flow system. Videos and images are shown that illustrate how to assemble, prepare the instrument for an experiment, and load the different tissue/cell models into the perifusion chambers. In addition, guidelines for selecting conditions for protocol- and tissue-specific experiments are delineated and discussed, including setting the correct flow rate to tissue ratio to obtain consistent and stable culture conditions and accurate determinations of consumption and production rates. The combination of optimal tissue maintenance and real-time assessment of multiple parameters yields highly informative data sets that will have great utility for research in the physiology of the eye and drug discovery for the treatment of impaired vision.


Asunto(s)
Coroides , Epitelio Pigmentado de la Retina , Ratones , Humanos , Animales , Células Cultivadas , Coroides/metabolismo , Esclerótica/metabolismo , Transporte Biológico/fisiología
20.
Sci Rep ; 13(1): 9554, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308546

RESUMEN

Mechanisms underlying long-term sustained weight loss and glycemic normalization after obesity surgery include changes in gut hormone levels, including glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). We demonstrate that two peptide biased agonists (GEP44 and GEP12) of the GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors (GLP-1R, Y1-R, and Y2-R, respectively) elicit Y1-R antagonist-controlled, GLP-1R-dependent stimulation of insulin secretion in both rat and human pancreatic islets, thus revealing the counteracting effects of Y1-R and GLP-1R agonism. These agonists also promote insulin-independent Y1-R-mediated glucose uptake in muscle tissue ex vivo and more profound reductions in food intake and body weight than liraglutide when administered to diet-induced obese rats. Our findings support a role for Y1-R signaling in glucoregulation and highlight the therapeutic potential of simultaneous receptor targeting to achieve long-term benefits for millions of patients.


Asunto(s)
Péptido 1 Similar al Glucagón , Neuropéptidos , Humanos , Animales , Ratas , Control Glucémico , Pérdida de Peso , Péptido YY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA