Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta ; 1858(2): 281-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26654782

RESUMEN

It has been a long-standing question how the two leaflets in a lipid bilayer modulate each others' physical properties. In this paper, we discuss how this interaction may take place through interdigitation. We use atomistic molecular dynamics simulations to consider asymmetric lipid membrane models whose compositions are based on the lipidomics data determined for exosomes released by PC-3 prostate cancer cells. The simulations show interdigitation to be exceptionally strong for long-chain sphingomyelin (SM) molecules. In asymmetric membranes the amide-linked chain of SM is observed to extend deep into the opposing membrane leaflet. Interestingly, we find that the conformational order of the amide-linked SM chain increases the deeper it penetrates to the opposing leaflet. Analysis of this finding reveals that the amide-linked SM chain interacts favorably with the lipid chains in the opposite leaflet, and that cholesterol modulates the effect of SM interdigitation by influencing the conformational order of lipid hydrocarbon chains in the opposing (cytosolic) leaflet.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Modelos Biológicos , Neoplasias de la Próstata/metabolismo , Esfingomielinas/metabolismo , Línea Celular Tumoral , Humanos , Masculino
2.
Biochem J ; 470(1): 23-37, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26251444

RESUMEN

2-Deoxy-D-glucose (2DG) is a structural analogue of glucose with well-established applications as an inhibitor of glycolysis and N-glycosylation. Importantly, 2DG has been shown to improve the efficacy of several cancer chemotherapeutic agents in vivo and thus it is in clinical studies in combination with chemotherapy and radiotherapy. However, although 2DG has been demonstrated to modulate many cellular functions, including autophagy, apoptosis and cell cycle control, little is known about the effects of 2DG on intracellular transport, which is of great importance when predicting the effects of 2DG on therapeutic agents. In addition to proteins, lipids play important roles in cellular signalling and in controlling cellular trafficking. We have, in the present study, investigated the effects of 2DG on cellular lipid composition and by use of protein toxins we have studied 2DG-mediated changes in intracellular trafficking. By quantifying more than 200 individual lipid species from 17 different lipid classes, we have found that 2DG treatment changes the levels and/or species composition of several lipids, such as phosphatidylinositol (PI), diacylglycerol (DAG), cholesteryl ester (CE), ceramide (Cer) and lysophospho-lipids. Moreover, 2DG becomes incorporated into the carbohydrate moiety of glycosphingolipids (GSLs). In addition, we have discovered that 2DG protects cells against Shiga toxins (Stxs) and inhibits release of the cytotoxic StxA1 moiety in the endoplasmic reticulum (ER). The data indicate that the 2DG-induced protection against Stx is independent of inhibition of glycolysis or N-glycosylation, but rather mediated via the depletion of Ca(2+) from cellular reservoirs by 2DG. In conclusion, our results reveal novel actions of 2DG on cellular lipids and Stx toxicity.


Asunto(s)
Citoprotección/efectos de los fármacos , Desoxiglucosa/farmacología , Lípidos de la Membrana/metabolismo , Toxinas Shiga/toxicidad , Línea Celular , Citoprotección/fisiología , Humanos
3.
Cell Mol Life Sci ; 71(6): 1097-116, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23921715

RESUMEN

Cell density is one of the extrinsic factors to which cells adapt their physiology when grown in culture. However, little is known about the molecular changes which occur during cell growth and how cellular responses are then modulated. In many cases, inhibitors, drugs or growth factors used for in vitro studies change the rate of cell proliferation, resulting in different cell densities in control and treated samples. Therefore, for a comprehensive data analysis, it is essential to understand the implications of cell density on the molecular level. In this study, we have investigated how lipid composition changes during cell growth, and the consequences it has for transport of Shiga toxin. By quantifying 308 individual lipid species from 17 different lipid classes, we have found that the levels and species distribution of several lipids change during cell growth, with the major changes observed for diacylglycerols, phosphatidic acids, cholesterol esters, and lysophosphatidylethanolamines. In addition, there is a reduced binding and retrograde transport of Shiga toxin in high density cells which lead to reduced intoxication by the toxin. In conclusion, our data provide novel information on how lipid composition changes during cell growth in culture, and how these changes can modulate intracellular trafficking.


Asunto(s)
Recuento de Células , Metabolismo de los Lípidos , Sintaxina 1/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Colesterol/metabolismo , Diglicéridos/metabolismo , Globósidos/metabolismo , Glicoesfingolípidos/metabolismo , Células HeLa , Células Hep G2 , Humanos , Lisofosfolípidos/metabolismo , Ácidos Fosfatidicos/metabolismo , Transporte de Proteínas , Toxina Shiga/metabolismo , Sintaxina 1/genética , Trihexosilceramidas/metabolismo
4.
Cell Mol Life Sci ; 71(21): 4285-300, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24740796

RESUMEN

Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, DL-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC50) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50-70% of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70% of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.


Asunto(s)
Glicerol/química , Éteres de Glicerilo/química , Toxinas Shiga/química , Transporte Biológico , Biotinilación , Línea Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Endocitosis , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Éter/química , Glicoesfingolípidos/química , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Lípidos/química , Ácido Palmítico/química , Toxina Shiga/química , Trihexosilceramidas/química
5.
Biochim Biophys Acta ; 1831(7): 1302-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24046871

RESUMEN

The molecular lipid composition of exosomes is largely unknown. In this study, sophisticated shotgun and targeted molecular lipidomic assays were performed for in-depth analysis of the lipidomes of the metastatic prostate cancer cell line, PC-3, and their released exosomes. This study, based in the quantification of approximately 280 molecular lipid species, provides the most extensive lipid analysis of cells and exosomes to date. Interestingly, major differences were found in the lipid composition of exosomes compared to parent cells. Exosomes show a remarkable enrichment of distinct lipids, demonstrating an extraordinary discrimination of lipids sorted into these microvesicles. In particular, exosomes are highly enriched in glycosphingolipids, sphingomyelin, cholesterol, and phosphatidylserine (mol% of total lipids). Furthermore, lipid species, even of classes not enriched in exosomes, were selectively included in exosomes. Finally, it was found that there is an 8.4-fold enrichment of lipids per mg of protein in exosomes. The detailed lipid composition provided in this study may be useful to understand the mechanism of exosome formation, release and function. Several of the lipids enriched in exosomes could potentially be used as cancer biomarkers.


Asunto(s)
Exosomas/química , Lípidos/análisis , Próstata/citología , Neoplasias de la Próstata/química , Línea Celular Tumoral , Colesterol/análisis , Glicosilación , Humanos , Masculino , Fosfatidilserinas/análisis , Próstata/química , Esfingolípidos/análisis , Esfingomielinas/análisis
6.
Biochim Biophys Acta ; 1811(11): 925-34, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21767661

RESUMEN

Applications in biomedical research increasingly demand detailed lipid molecule information acquired at high throughput. Although the recent advances in lipidomics offer to delineate the lipidomes in detail, the challenge remains in performing such analyses at the requested quality and to maintain the quality also in a high throughput setting. In this review we describe a high throughput molecular lipidomic solution based on robotic assisted sample preparation and lipid extraction and multiple lipidomic platforms integrated with a sophisticated bioinformatics system. As demonstrated, the virtue of this lipidomic toolkit lies in its high throughput delivery of comprehensive quantitative lipidomic outputs at the molecular lipid level, its ease of scalability and its capability to serve in a regulatory setting. We anticipate that this toolkit will contribute to basic research, nutritional research and promote the discovery of new disease biomarkers, disease related mechanisms of actions and drug targets.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Metabolismo de los Lípidos , Lípidos/análisis , Métodos Analíticos de la Preparación de la Muestra , Animales , Automatización , Biología Computacional , Humanos , Lípidos/química
7.
Data Brief ; 7: 1171-1174, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27761499

RESUMEN

In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present in these models are: cholesterol (CHOL), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidyl-ethanolamine (SOPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (SOPS), N-palmitoyl-D-erythro-sphingosyl-phosphatidylcholine (SM16), and N-lignoceroyl-D-erythro-sphingosyl-phosphatidylcholine (SM24). The bilayers׳ compositions are based on lipidomic studies of PC-3 prostate cancer cells and exosomes discussed in Llorente et al. (2013) [1], showing an increase in the section of long-tail lipid species (SOPS, SOPE, and SM24) in the exosomes. Former knowledge about lipid asymmetry in cell membranes was accounted for in the models, meaning that the model of the inner leaflet is composed of a mixture of PC, PS, PE, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids׳ topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions (md.mdp). The data is associated with the research article "Interdigitation of Long-Chain Sphingomyelin Induces Coupling of Membrane Leaflets in a Cholesterol Dependent Manner" (Róg et al., 2016) [3].

8.
J Clin Endocrinol Metab ; 99(1): E45-52, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24243630

RESUMEN

CONTEXT: Coronary artery disease (CAD) is among the leading causes of mortality and morbidity worldwide. Traditional risk markers explain only a proportion of total cardiovascular risk. Thus, development and improvement of early diagnostic strategies and targeted initiation of preventive measures would be of great benefit. OBJECTIVE: We aimed to identify molecular lipids that are associated with fatal outcome of CAD patients. Furthermore, the effect of different lipid-lowering drugs on novel risk lipids was evaluated. METHODS: Serum samples of 445 CAD subjects participating in a long-term follow-up of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study were analyzed. In addition, samples obtained from a separate randomized parallel three-group study of subjects treated with simvastatin (n=24), ezetimibe (n=24), or their combination (n=24) were studied. Furthermore, samples from the LURIC participants with a loss-of-function mutation (R46L) in the PCSK9 gene (n=19) were analyzed and compared with major allele carriers (n=868). RESULTS: Distinct ceramide species were significantly associated with the fatal outcome of CAD patients. Simvastatin lowered plasma ceramides broadly by about 25%, but no changes in ceramides were observed in the ezetimibe group. PCSK9 deficiency was significantly associated (-13%) with lowered low-density lipoprotein cholesterol accompanied by a significant 20% reduction in CAD outcome risk-related ceramides. CONCLUSIONS: These data suggest that distinct ceramides associate significantly with CAD outcome independently of traditional risk factors and that the mechanism of lipid lowering is important.


Asunto(s)
Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/epidemiología , Hipolipemiantes/uso terapéutico , Lípidos/sangre , Proproteína Convertasas/genética , Serina Endopeptidasas/genética , Simvastatina/uso terapéutico , Anciano , Azetidinas/uso terapéutico , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/sangre , Ezetimiba , Femenino , Estudios de Seguimiento , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Sustancias Macromoleculares/sangre , Masculino , Persona de Mediana Edad , Proproteína Convertasa 9 , Proproteína Convertasas/deficiencia , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Riesgo , Serina Endopeptidasas/deficiencia
9.
PLoS One ; 8(9): e75904, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098742

RESUMEN

The ether-lipid precursor sn-1-O-hexadecylglycerol (HG) can be used to compensate for early metabolic defects in ether-lipid biosynthesis. To investigate a possible metabolic link between ether-linked phospholipids and the rest of the cellular lipidome, we incubated HEp-2 cells with HG. Mass spectrometry analysis revealed major changes in the lipidome of HG-treated cells compared to that of untreated cells or cells treated with palmitin, a control substance for HG containing an acyl group instead of the ether group. We present quantitative data for a total of 154 species from 17 lipid classes. These species are those constituting more than 2% of their lipid class for most lipid classes, but more than 1% for the ether lipids and glycosphingolipids. In addition to the expected ability of HG to increase the levels of ether-linked glycerophospholipids with 16 carbon atoms in the sn-1 position, this precursor also decreased the amounts of glycosphingolipids and increased the amounts of ceramide, phosphatidylinositol and lysophosphatidylinositol. However, incubation with palmitin, the fatty acyl analogue of HG, also increased the amounts of ceramide and phosphatidylinositols. Thus, changes in these lipid classes were not ether lipid-dependent. No major effects were observed for the other lipid classes, and cellular functions such as growth and endocytosis were unaffected. The data presented clearly demonstrate the importance of performing detailed quantitative lipidomic studies to reveal how the metabolism of ether-linked glycerophospholipids is coupled to that of glycosphingolipids and ester-linked glycerophospholipids, especially phosphatidylinositols.


Asunto(s)
Glicerol/farmacología , Glicerofosfolípidos/biosíntesis , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/aislamiento & purificación , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Glicerofosfolípidos/química , Humanos , Estructura Molecular , Espectrometría de Masas en Tándem
10.
Metabolites ; 2(1): 195-213, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24957374

RESUMEN

Shotgun lipidomics has evolved into a myriad of multi-dimensional strategies for molecular lipid characterization, including bioinformatics tools for mass spectrum interpretation and quantitative measurements to study systems-lipidomics in complex biological extracts. Taking advantage of spectral mass accuracy, scan speed and sensitivity of improved quadrupole linked time-of-flight mass analyzers, we developed a bias-free global lipid profiling acquisition technique of sequential precursor ion fragmentation called MS/MSALL. This generic information-independent tandem mass spectrometry (MS) technique consists of a Q1 stepped mass isolation window through a set mass range in small increments, fragmenting and recording all product ions and neutral losses. Through the accurate MS and MS/MS information, the molecular lipid species are resolved, including distinction of isobaric and isomeric species, and composed into more precise lipidomic outputs. The method demonstrates good reproducibility and at least 3 orders of dynamic quantification range for isomeric ceramides in human plasma. More than 400 molecular lipids in human plasma were uncovered and quantified in less than 12 min, including acquisitions in both positive and negative polarity modes. We anticipate that the performance of sequential precursor ion fragmentation both in quality and throughput will lead to the uncovering of new avenues throughout the biomedical research community, enhance biomarker discovery and provide novel information target discovery programs as it will prospectively shed new insight into affected metabolic and signaling pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA