Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 62(4): 491-506, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203176

RESUMEN

ULK1 and ULK2 are thought to be essential for initiating autophagy, and Ulk1/2-deficient mice die perinatally of autophagy-related defects. Therefore, we used a conditional knockout approach to investigate the roles of ULK1/2 in the brain. Although the mice showed neuronal degeneration, the neurons showed no accumulation of P62(+)/ubiquitin(+) inclusions or abnormal membranous structures, which are observed in mice lacking other autophagy genes. Rather, neuronal death was associated with activation of the unfolded protein response (UPR) pathway. An unbiased proteomics approach identified SEC16A as an ULK1/2 interaction partner. ULK-mediated phosphorylation of SEC16A regulated the assembly of endoplasmic reticulum (ER) exit sites and ER-to-Golgi trafficking of specific cargo, and did not require other autophagy proteins (e.g., ATG13). The defect in ER-to-Golgi trafficking activated the UPR pathway in ULK-deficient cells; both processes were reversed upon expression of SEC16A with a phosphomimetic substitution. Thus, the regulation of ER-to-Golgi trafficking by ULK1/2 is essential for cellular homeostasis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Encéfalo/enzimología , Retículo Endoplásmico/enzimología , Fibroblastos/enzimología , Aparato de Golgi/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Encéfalo/patología , Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/patología , Femenino , Genotipo , Aparato de Golgi/patología , Células HEK293 , Homeostasis , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Interferencia de ARN , Factores de Tiempo , Transfección , Respuesta de Proteína Desplegada , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Cereb Cortex ; 30(3): 1623-1636, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31504267

RESUMEN

In mice, terminal differentiation of subpopulations of interneurons occurs in late postnatal stages, paralleling the emergence of the adult cortical architecture. Here, we investigated the effects of altered initial cortical architecture on later interneuron development. We identified that a class of somatostatin (SOM)-expressing GABAergic interneurons undergoes terminal differentiation between 2nd and 3rd postnatal week in the mouse somatosensory barrel cortex and upregulates Reelin expression during neurite outgrowth. Our previous work demonstrated that transient expression (E15-P10) of serotonin uptake transporter (SERT) in thalamocortical projection neurons regulates barrel elaboration during cortical map establishment. We show here that in thalamic neuron SERT knockout mice, these SOM-expressing interneurons develop at the right time, reach correct positions and express correct neurochemical markers, but only 70% of the neurons remain in the adult barrel cortex. Moreover, those neurons that remain display altered dendritic patterning. Our data indicate that a precise architecture at the cortical destination is not essential for specifying late-developing interneuron identities, their cortical deposition, and spatial organization, but dictates their number and dendritic structure ultimately integrated into the cortex. Our study illuminates how disruption of temporal-specific SERT function and related key regulators during cortical map establishment can alter interneuron development trajectory that persists to adult central nervous system.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Interneuronas/fisiología , Ratones Transgénicos , Neuronas/metabolismo , Proteína Reelina , Somatostatina/metabolismo , Transmisión Sináptica/fisiología
3.
Pharmacol Res ; 140: 56-66, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29894763

RESUMEN

Adrenal chromaffin cells comprise the neuroendocrine arm of the sympathetic nervous system and secrete catecholamines to coordinate the appropriate stress response. Deletion of the serotonin (5-HT) transporter (SERT) gene in mice (SERT-/- mice) or pharmacological block of SERT function in rodents and humans augments this sympathoadrenal stress response (epinephrine secretion). The prevailing assumption is that loss of CNS SERT alters central drive to the peripheral sympathetic nervous system. Adrenal chromaffin cells also prominently express SERT where it might coordinate accumulation of 5-HT for reuse in the autocrine control of stress-evoked catecholamine secretion. To help test this hypothesis, we have generated a novel mouse model with selective excision of SERT in the peripheral sympathetic nervous system (SERTΔTH), generated by crossing floxed SERT mice with tyrosine hydroxylase Cre driver mice. SERT expression, assessed by western blot, was abolished in the adrenal gland but not perturbed in the CNS of SERTΔTH mice. SERT-mediated [3H] 5-HT uptake was unaltered in midbrain, hindbrain, and spinal cord synaptosomes, confirming transporter function was intact in the CNS. Endogenous midbrain and whole blood 5-HT homeostasis was unperturbed in SERTΔTH mice, contrasting with the depleted 5-HT content in SERT-/- mice. Selective SERT excision reduced adrenal gland 5-HT content by ≈ 50% in SERTΔTH mice but had no effect on adrenal catecholamine content. This novel model confirms that SERT expressed in adrenal chromaffin cells is essential for maintaining wild-type levels of 5-HT and provides a powerful tool to help dissect the role of SERT in the sympathetic stress response.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Animales , Antidepresivos , Femenino , Masculino , Mesencéfalo/metabolismo , Ratones Transgénicos , Modelos Animales , Rombencéfalo/metabolismo , Serotonina/metabolismo , Médula Espinal/metabolismo , Tirosina 3-Monooxigenasa
5.
PLoS Genet ; 11(9): e1005540, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26402365

RESUMEN

Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gß subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gß-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gß GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gß signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gß-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Serotonina/biosíntesis , Transducción de Señal , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Unión al GTP Heterotriméricas/química , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/metabolismo , Homología de Secuencia de Aminoácido
6.
PLoS Genet ; 9(3): e1003324, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505381

RESUMEN

In Caenorhabditis elegans the Toll-interleukin receptor domain adaptor protein TIR-1 via a conserved mitogen-activated protein kinase (MAPK) signaling cascade induces innate immunity and upregulates serotonin (5-HT) biosynthesis gene tph-1 in a pair of ADF chemosensory neurons in response to infection. Here, we identify transcription factors downstream of the TIR-1 signaling pathway. We show that common transcription factors control the innate immunity and 5-HT biosynthesis. We demonstrate that a cysteine to tyrosine substitution in an ARM motif of the HEAT/Arm repeat region of the TIR-1 protein confers TIR-1 hyperactivation, leading to constitutive tph-1 upregulation in the ADF neurons, increased expression of intestinal antimicrobial genes, and enhanced resistance to killing by the human opportunistic pathogen Pseudomonas aeruginosa PA14. A forward genetic screen for suppressors of the hyperactive TIR-1 led to the identification of DAF-19, an ortholog of regulatory factor X (RFX) transcription factors that are required for human adaptive immunity. We show that DAF-19 concerts with ATF-7, a member of the activating transcription factor (ATF)/cAMP response element-binding B (CREB) family of transcription factors, to regulate tph-1 and antimicrobial genes, reminiscent of RFX-CREB interaction in human immune cells. daf-19 mutants display heightened susceptibility to killing by PA14. Remarkably, whereas the TIR-1-MAPK-DAF-19/ATF-7 pathway in the intestinal immunity is regulated by DKF-2/protein kinase D, we found that the regulation of tph-1 expression is independent of DKF-2 but requires UNC-43/Ca(2+)/calmodulin-dependent protein kinase (CaMK) II. Our results suggest that pathogenic cues trigger a common core-signaling pathway via tissue-specific mechanisms and demonstrate a novel role for RFX factors in neuronal and innate immune responses to infection.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Inmunidad Innata , Pseudomonas aeruginosa , Serotonina , Factores de Transcripción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/metabolismo , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Intestinos/inmunología , Intestinos/microbiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/microbiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Receptores Acoplados a Proteínas G , Serotonina/biosíntesis , Serotonina/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Triptófano Hidroxilasa/metabolismo
7.
J Neurosci ; 31(24): 8948-57, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21677178

RESUMEN

Serotonin [5-hydroxytryptamine (5-HT)]-absorbing neurons use serotonin reuptake transporter (SERT) to uptake 5-HT from extracellular space but do not synthesize it. While 5-HT-absorbing neurons have been identified in diverse organisms from Caenorhabditis elegans to humans, their function has not been elucidated. Here, we show that SERT in 5-HT-absorbing neurons controls behavioral response to food deprivation in C. elegans. The AIM and RIH interneurons uptake 5-HT released from chemosensory neurons and secretory neurons. Genetic analyses suggest that 5-HT secreted by both synaptic vesicles and dense core vesicles diffuse readily to the extrasynaptic space adjacent to the AIM and RIH neurons. Loss of mod-5/SERT function blocks the 5-HT absorption. mod-5/SERT mutants have been shown to exhibit exaggerated locomotor response to food deprivation. We found that transgenic expression of MOD-5/SERT in the 5-HT-absorbing neurons fully corrected the exaggerated behavior. Experiments of cell-specific inhibition of synaptic transmission suggest that the synaptic release of 5-HT from the 5-HT-absorbing neurons is not required for this behavioral modulation. Our data point to the role of 5-HT-absorbing neurons as temporal-spatial regulators of extrasynaptic 5-HT. Regulation of extrasynaptic 5-HT levels by 5-HT-absorbing neurons may represent a fundamental mechanism of 5-HT homeostasis, integrating the activity of 5-HT-producing neurons with distant targets in the neural circuits, and could be relevant to some actions of selective serotonin reuptake inhibitors in humans.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología , Serotonina/metabolismo , Adaptación Fisiológica/genética , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Modelos Biológicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/farmacología , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
8.
Cell Metab ; 4(6): 429-40, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17141627

RESUMEN

Stress response is a fundamental form of behavioral and physiological plasticity. Here we describe how serotonin (5HT) governs stress behavior by regulating DAF-2 insulin/IGF-1 receptor signaling to the DAF-16/FOXO transcription factor at the nexus of development, metabolism, immunity, and stress responses in C. elegans. Serotonin-deficient tph-1 mutants, like daf-2 mutants, exhibit DAF-16 nuclear accumulation and constitutive physiological stress states. Exogenous 5HT and fluoxetine (Prozac) prevented DAF-16 nuclear accumulation in wild-type animals under stresses. Genetic analyses imply that DAF-2 is a downstream target of 5HT signaling and that distinct serotonergic neurons act through distinct 5HT receptors to influence distinct DAF-16-mediated stress responses. We suggest that modulation of FOXO by 5HT represents an ancient feature of stress physiology and that the C. elegans is a genetically tractable model that can be used to delineate the molecular mechanisms and drug actions linking 5HT, neuroendocrine signaling, immunity, and mitochondrial function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Serotonina/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fluoxetina/farmacología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Modelos Animales , Mutación , Sistemas Neurosecretores/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/inmunología , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Serotonina/genética , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética
9.
Front Physiol ; 12: 783359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987416

RESUMEN

Food produces powerful reinforcement that can lead to overconsumption and likely contributes to the obesity epidemic. The present studies examined molecular mechanisms mediating food-induced reinforcement in the model system C. elegans. After a 1-h training session during which food (bacteria) is paired with the odorant butanone, odor preference for butanone robustly increased. Glucose mimicked this effect of bacteria. Glucose-induced odor preference was enhanced similarly by prior food withdrawal or blocking glucose metabolism in the presence of food. Food- and glucose-induced odor preference was mimicked by serotonin signaling through the serotonin type-4 (5-HT4) receptor. Dopamine (thought to act primarily through a D1-like receptor) facilitated, whereas the D2 agonist bromocriptine blocked, food- and glucose-induced odor preference. Furthermore, prior food withdrawal similarly influenced reward produced by serotonin, dopamine, or food, implying post-synaptic enhancement of sensitivity to serotonin and dopamine. These results suggest that glucose metabolism plays a key role in mediating both food-induced reinforcement and enhancement of that reinforcement by prior food withdrawal and implicate serotonergic signaling through 5-HT4 receptor in the re-enforcing properties of food.

10.
J Neurosci ; 29(13): 4065-75, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19339602

RESUMEN

Intraflagellar transport in cilia has been proposed as a crucial mediator of Hedgehog signal transduction during embryonic pattern formation in both vertebrates and invertebrates. Here, we show that the Hh receptor Patched-related factor DAF-6 and intraflagellar transport modulate serotonin production in Caenorhabditis elegans animals, by remodeling the architecture of dendritic cilia of a pair of ADF serotonergic chemosensory neurons. Wild-type animals under aversive environment drastically reduce DAF-6 expression in glia-like cells surrounding the cilia of chemosensory neurons, resulting in cilium structural remodeling and upregulation of the serotonin-biosynthesis enzyme tryptophan hydroxylase tph-1 in the ADF neurons. These cellular and molecular modifications are reversed when the environment improves. Mutants of daf-6 or intraflagellar transport constitutively upregulate tph-1 expression. Epistasis analyses indicate that DAF-6/intraflagellar transport and the OCR-2/OSM-9 TRPV channel act in concert, regulating two layers of activation of tph-1 in the ADF neurons. The TRPV signaling turns on tph-1 expression under favorable and aversive conditions, whereas inactivation of DAF-6 by stress results in further upregulation of tph-1 independently of OCR-2/OSM-9 activity. Behavioral analyses suggest that serotonin facilitates larval animals resuming development when the environment improves. Our study revealed the cilium structure of serotonergic neurons as a trigger of regulated serotonin production, and demonstrated that a Hedgehog-related signaling component is dynamically regulated by environment and underscores neuroplasticity of serotonergic neurons in C. elegans under stress and stress recovery.


Asunto(s)
Cilióforos/fisiología , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Serotonina/biosíntesis , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cilióforos/citología , Cilióforos/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Relación Dosis-Respuesta a Droga , Epistasis Genética/genética , Epistasis Genética/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Hedgehog/genética , Calor , Péptidos y Proteínas de Señalización Intracelular/genética , Larva , Mutación/genética , Neuronas/fisiología , Serotonina/genética , Transducción de Señal/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Triptófano Hidroxilasa/metabolismo
11.
J Neurosci ; 25(4): 1015-23, 2005 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-15673683

RESUMEN

Caenorhabditis elegans OCR-2 (OSM-9 and capsaicin receptor-related) is a TRPV (vanilloid subfamily of transient receptor potential channel) protein that regulates serotonin (5-HT) biosynthesis in chemosensory neurons and also mediates olfactory and osmotic sensation. Here, we identify the molecular basis for the polymodal function of OCR-2 in its native cellular environment. We show that OCR-2 function in 5-HT production and osmotic sensing is governed by its N-terminal region upstream of the ankyrin repeats domain, but the diacetyl sensitivity is mediated by independent mechanisms. The ocr-2(yz5) mutation results in a glycine-to-glutamate substitution (G36E) within the N-terminal region. The G36E substitution causes dramatic downregulation of 5-HT synthesis in the ADF neurons, eliminates osmosensation mediated by the ASH neurons, but does not affect the response to the odorant diacetyl mediated by the AWA neurons. Conversely, wild-type sequence of the N-terminal segment confers osmotic sensitivity and upregulation of 5-HT production to a normally insensitive C. elegans homolog, OCR-4, but this chimeric channel does not respond to diacetyl stimuli. Furthermore, expression of either the mouse or human TRPV2 gene under the ocr-2 promoter can substantially restore 5-HT biosynthesis in ocr-2-null mutants but cannot improve the deficits in osmotic or olfactory sensation, suggesting that TRPV2 can substitute for the role of OCR-2 only in serotonergic neurons. Thus, different sensory functions of OCR-2 arise from separable intrinsic determinants, and specific functional properties of TRPV channel proteins may be selectively conserved across phyla.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/fisiología , Canales Iónicos/química , Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Repetición de Anquirina , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Canales de Calcio/química , Canales de Calcio/fisiología , Secuencia Conservada , Humanos , Mamíferos , Ratones , Datos de Secuencia Molecular , Neuronas/fisiología , Proteínas Recombinantes de Fusión , Sensación/fisiología , Serotonina/fisiología , Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio , Triptófano Hidroxilasa/biosíntesis
12.
Genetics ; 169(3): 1425-36, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15654117

RESUMEN

Drugs that target the serotonergic system are the most commonly prescribed therapeutic agents and are used for treatment of a wide range of behavioral and neurological disorders. However, the mechanism of the drug action remain a conjecture. Here, we dissect the genetic targets of serotonin (5HT), the selective 5HT reuptake inhibitor (SSRI) fluoxetine (Prozac), the tricyclic antidepressant imipramine, and dopamine. Using the well-established serotonergic response in C. elegans egg-laying behavior as a paradigm, we show that action of fluoxetine and imipramine at the 5HT reuptake transporter (SERT) and at 5HT receptors are separable mechanisms. Even mutants completely lacking 5HT or SERT can partially respond to fluoxetine and imipramine. Furthermore, distinct mechanisms for each drug can be recognized to mediate these responses. Deletion of SER-1, a 5HT1 receptor, abolishes the response to 5HT but has only a minor effect on the response to imipramine and no effect on the response to fluoxetine. In contrast, deletion of SER-4, a 5HT2 receptor, confers significant resistance to imipramine while leaving the responses to 5HT or fluoxetine intact. Further, fluoxetine can stimulate egg laying via the Gq protein EGL-30, independent of SER-1, SER-4, or 5HT. We also show that dopamine antagonizes the 5HT action via the 5HT-gated ion channel MOD-1 signaling, suggesting that this channel activity couples 5HT and dopamine signaling. These results suggest that the actions of these drugs at specific receptor subtypes could determine their therapeutic efficacy. SSRIs and tricyclic antidepressants may regulate 5HT outputs independently of synaptic levels of 5HT.


Asunto(s)
Caenorhabditis elegans/fisiología , Dopamina/farmacología , Fluoxetina/farmacología , Imipramina/farmacología , Oviposición/fisiología , Receptores de Serotonina/fisiología , Serotonina/farmacología , Animales , Conducta Animal , Caenorhabditis elegans/genética , Femenino , Eliminación de Gen , Proteínas del Helminto/efectos de los fármacos , Proteínas del Helminto/fisiología , Oviposición/efectos de los fármacos , Oviposición/genética , Receptores de Serotonina/efectos de los fármacos
13.
Neurochem Int ; 98: 129-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27282696

RESUMEN

The cerebral cortex is organized into morphologically distinct areas that provide biological frameworks underlying perception, cognition, and behavior. Profiling mouse and human cortical transcriptomes have revealed temporal-specific differential gene expression modules in distinct neocortical areas during cortical map establishment. However, the biological roles of spatiotemporal gene expression in cortical patterning and how cortical topographic gene expression is regulated are largely unknown. Here, we characterize temporal- and spatial-defined expression of serotonin (5-HT) transporter (SERT) in glutamatergic neurons during sensory map development in mice. SERT is transiently expressed in glutamatergic thalamic neurons projecting to sensory cortices and in pyramidal neurons in the prefrontal cortex (PFC) and hippocampus (HPC) during the period that lays down the basic functional neural circuits. We previously identified that knockout of SERT in the thalamic neurons blocks 5-HT uptake by their thalamocortical axons, resulting in excessive 5-HT signaling that impairs sensory map architecture. In contrast, here we show that selective SERT knockout in the PFC and HPC neurons does not perturb sensory map patterning. These data suggest that transient SERT expression in specific glutamatergic neurons provides area-specific instructions for cortical map patterning. Hence, genetic and pharmacological manipulations of this SERT function could illuminate the fundamental genetic programming of cortex-specific maps and biological roles of temporal-specific cortical topographic gene expression in normal development and mental disorders.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/biosíntesis , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Mapeo Encefálico , Regulación de la Expresión Génica/genética , Hipocampo/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Corteza Prefrontal/crecimiento & desarrollo , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/fisiología , Transmisión Sináptica/fisiología , Tálamo/citología , Tálamo/efectos de los fármacos , Tálamo/metabolismo
14.
Cell Rep ; 10(3): 346-358, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600870

RESUMEN

Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs) dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

15.
Genetics ; 186(3): 929-41, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20739712

RESUMEN

Fluoxetine is one of the most commonly prescribed medications for many behavioral and neurological disorders. Fluoxetine acts primarily as an inhibitor of the serotonin reuptake transporter (SERT) to block the removal of serotonin from the synaptic cleft, thereby enhancing serotonin signals. While the effects of fluoxetine on behavior are firmly established, debate is ongoing whether inhibition of serotonin reuptake is a sufficient explanation for its therapeutic action. Here, we provide evidence of two additional aspects of fluoxetine action through genetic analyses in Caenorhabditis elegans. We show that fluoxetine treatment and null mutation in the sole SERT gene mod-5 eliminate serotonin in specific neurons. These neurons do not synthesize serotonin but import extracellular serotonin via MOD-5/SERT. Furthermore, we show that fluoxetine acts independently of MOD-5/SERT to regulate discrete properties of acetylcholine (Ach), gamma-aminobutyric acid (GABA), and glutamate neurotransmission in the locomotory circuit. We identified that two G-protein-coupled 5-HT receptors, SER-7 and SER-5, antagonistically regulate the effects of fluoxetine and that fluoxetine binds to SER-7. Epistatic analyses suggest that SER-7 and SER-5 act upstream of AMPA receptor GLR-1 signaling. Our work provides genetic evidence that fluoxetine may influence neuronal functions and behavior by directly targeting serotonin receptors.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Fluoxetina/farmacología , Transmisión Sináptica/efectos de los fármacos , Acetilcolina/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Bioensayo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fluoxetina/metabolismo , Ácido Glutámico/metabolismo , Relajación Muscular/efectos de los fármacos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
16.
Am J Physiol Cell Physiol ; 293(2): C670-81, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17475669

RESUMEN

Two putative orthologs to the human reduced folate carrier (hRFC), folt-1 and folt-2, which share a 40 and 31% identity, respectively, with the hRFC sequence, have been identified in the Caenorhabditis elegans genome. Functional characterization of the open reading frame of the putative folt-1 and folt-2 showed folt-1 to be a specific folate transporter. Transport of folate by folt-1 expressed in a heterologous expression system showed an acidic pH dependence, saturability (apparent K(m) of 1.23 +/- 0.18 microM), a similar degree of inhibition by reduced and substituted folate derivatives, sensitivity to the anti-inflammatory drug sulfasalazine (apparent K(i) of 0.13 mM), and inhibition by anion transport inhibitors, e.g., DIDS. Knocking down (silencing) or knocking out the folt-1 gene led to a significant inhibition of folate uptake by intact living C. elegans. We also cloned the 5'-regulatory region of the folt-1 gene and confirmed promoter activity of the construct in vivo in living C. elegans. With the use of the transcriptional fusion construct (i.e., folt-1::GFP), the expression pattern of folt-1 in different tissues of living animal was found to be highest in the pharynx and intestine. Furthermore, folt-1::GFP expression was developmentally and adaptively regulated in vivo. These studies demonstrate for the first time the existence of a specialized folate uptake system in C. elegans that has similar characteristics to the folate uptake process of the human intestine. Thus C. elegans provides a genetically tractable model that can be used to study integrative aspects of the folate uptake process in the context of the whole animal level.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Clonación Molecular , Ácido Fólico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-disulfónico/farmacología , Secuencia de Aminoácidos , Animales , Antiinflamatorios no Esteroideos/farmacología , Caenorhabditis elegans/química , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Línea Celular , Ácido Fólico/análogos & derivados , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Concentración de Iones de Hidrógeno , Cinética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Conformación Proteica , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteína Portadora de Folato Reducido , Sodio/metabolismo , Sulfasalazina/farmacología , Transfección
17.
Dev Biol ; 286(2): 618-28, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16168406

RESUMEN

How a common neurotransmitter phenotype specified in neurons of different origins is an outstanding issue in neuronal development and function. In C. elegans larvae, serotonin is synthesized in 2 pairs of neurons, the secretory neurons NSM and the chemosensory neurons ADF. In order to delineate the molecular mechanisms of serotonergic phenotype establishment, we have screened for neuron-specific serotonin deficient (nss) mutants. Our prior study showed that the POU-homeodomain factor UNC-86 is expressed in and required for the NSM neurons to adopt serotonergic phenotype and correct pathfinding, whereas ADF are unaffected in unc-86-null mutants. Here, we report that the LIM-homeodomain factor LIM-4 regulates ADF serotonergic phenotype. In lim-4 mutants, many aspects of ADF differentiation occur, however, they fail to express serotonin phenotype and exhibit aberrant cilia properties. LIM-4 expression rises in the neuroblast that produces two distinct neurons: ADF and the olfactory neuron AWB. We show that lim-4 is regulated by separable mechanisms to determine disparate subtype identities in these two neuronal types. In vivo promoter analyses reveal that cis-element(s) within introns are necessary and sufficient to direct lim-4 to specify serotonergic phenotype, whereas its 5'-upstream sequence directs lim-4 function in AWB. Thus, a transcription factor may act independently to specify distinct differentiation traits in two sister cells. We propose that serotonergic identity is specified in cell-specific contexts to coordinate the development and function.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Homeodominio/fisiología , Neuronas/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Serotonina/biosíntesis , Factores de Transcripción/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Mutación , Neuronas/citología , Factores del Dominio POU/biosíntesis , Factores del Dominio POU/fisiología , Fenotipo , Proteínas Recombinantes de Fusión/genética , Serotonina/deficiencia , Factores de Transcripción/genética
18.
Proc Natl Acad Sci U S A ; 100(16): 9560-5, 2003 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12883006

RESUMEN

The activity of transcription factors modulates several neural pathways that mediate complex behaviors. We describe here the role of the POU transcription factor UNC-86 in the olfactory behavior of Caenorhabditis elegans. unc-86-null mutants are defective in response to odor attractants but avoid odor repellents normally. Continuous UNC-86 activity is necessary for maintenance of odortaxis behavior; hyperactivation of UNC-86 by fusion to a VP16 activation domain dramatically enhances sensitivity to odor attractants and promotes odor-attractant adaptation. UNC-86 is not expressed in olfactory sensory neurons but is expressed throughout the life of the animal in the AIZ interneurons of the odorsensory pathway. We suggest that UNC-86 transcriptional activity regulates the expression of genes that mediate synaptic properties of AIZ and that hyperactive UNC-86::VP16 may enhance the expression of synaptic components to affect the capacity to analyze and process sensory information.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Linaje de la Célula , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/metabolismo , Modelos Anatómicos , Mutación , Neuronas/metabolismo , Neuronas/patología , Odorantes , Vías Olfatorias/fisiología , Factores del Dominio POU , Filogenia , Estructura Terciaria de Proteína , Olfato , Factores de Tiempo
19.
Development ; 131(7): 1629-38, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14998926

RESUMEN

Serotonin (5HT) is a pivotal signaling molecule that modulates behavioral and endocrine responses to diverse chemical and physical stimuli. We report cell-specific regulation of 5HT biosynthesis by transient receptor potential V (TRPV) ion channels in C. elegans. Mutations in the TRPV genes osm-9 or ocr-2 dramatically downregulate the expression of the gene encoding the 5HT synthesis enzyme tryptophan hydroxylase (tph-1) in the serotonergic chemosensory neurons ADF, but neither the mutation nor the double mutation of both channel genes affects other types of serotonergic neurons. The TRPV genes are expressed in the ADF neurons but not in other serotonergic neurons, and act cell-autonomously to regulate a neuron-specific transcription program. Whereas in olfactory neurons OSM-9 and OCR-2 function is dependent on ODR-3 Galpha, the activity of ODR-3 or two other Galpha proteins expressed in the ADF neurons is not required for upregulating tph-1 expression, thus the TRPV ion channels in different neurons may be regulated by different mechanisms. A gain-of-function mutation in CaMKII UNC-43 partially suppresses the downregulation of tph-1 in the TRPV mutants, thus CaMKII may be an effector of the TRPV signaling. Mutations in the TRPV genes cause worms developmentally arrest at the Dauer stage. This developmental defect is due in part to reduced 5HT inputs into daf-2/insulin neuroendocrine signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Células Quimiorreceptoras/metabolismo , Canales Iónicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas Aferentes/metabolismo , Serotonina/biosíntesis , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Regulación Enzimológica de la Expresión Génica , Canales Iónicos/química , Canales Iónicos/genética , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fenotipo , Regiones Promotoras Genéticas , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
20.
Development ; 129(16): 3901-11, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12135927

RESUMEN

A fundamental question in developmental neurobiology is how a common neurotransmitter is specified in different neuronal types?. We describe cell-specific regulation of the serotonergic phenotype by the C. elegans POU-transcription factor UNC-86. We show that unc-86 regulates particular aspects of the terminal neuronal identity in four classes of serotonergic neurons, but that the development of the ADF serotonergic neurons is regulated by an UNC-86-independent program. In the NSM neurons, the role of unc-86 is confined in late differentiation; the neurons are generated but do not express genes necessary for serotonergic neurotransmission. unc-86-null mutations affect the expression in NSM of tph-1, which encodes the serotonin synthetic enzyme tryptophan hydroxylase, and cat-1, which encodes a vesicular transporter that loads serotonin into synaptic vesicles, suggesting that unc-86 coordinately regulates serotonin synthesis and packaging. However, unc-86-null mutations do not impair the ability of NSM to reuptake serotonin released from the ADF serotonergic chemosensory neurons and this serotonin reuptake is sensitive to the serotonin reuptake block drugs imipramine and fluoxetine, demonstrating that serotonin synthesis and reuptake is regulated by distinct factors. The NSM neurons in unc-86-null mutants also display abnormal neurite outgrowth, suggesting a role of unc-86 in regulating this process as well.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Transporte de Membrana , Proteínas del Tejido Nervioso , Factores de Transcripción/metabolismo , Triptófano Hidroxilasa/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Supervivencia Celular , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Genes Homeobox , Glicoproteínas de Membrana/genética , Mutación , Neuritas/metabolismo , Neuronas/metabolismo , Factores del Dominio POU , Fenotipo , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA