Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Physiol ; 58(6): 1048-1058, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28407091

RESUMEN

Stomata within the plant epidermis regulate CO2 uptake for photosynthesis and water loss through transpiration. Stomatal opening in Arabidopsis thaliana is determined by various factors, including blue light as a signal and multiple phytohormones. Plasma membrane transporters, including H+-ATPase, K+ channels and anion channels in guard cells, mediate these processes, and the activities and expression levels of these components determine stomatal aperture. However, the regulatory mechanisms involved in these processes are not fully understood. In this study, we used infrared thermography to isolate a mutant defective in stomatal opening in response to light. The causative mutation was identified as an allele of the brassinosteroid (BR) biosynthetic mutant dwarf5. Guard cells from this mutant exhibited normal H+-ATPase activity in response to blue light, but showed reduced K+ accumulation and inward-rectifying K+ (K+in) channel activity as a consequence of decreased expression of major K+in channel genes. Consistent with these results, another BR biosynthetic mutant, det2-1, and a BR receptor mutant, bri1-6, exhibited reduced blue light-dependent stomatal opening. Furthermore, application of BR to the hydroponic culture medium completely restored stomatal opening in dwarf5 and det2-1 but not in bri1-6. However, application of BR to the epidermis of dwarf5 did not restore stomatal response. From these results, we conclude that endogenous BR acts in a long-term manner and is required in guard cells with the ability to open stomata in response to light, probably through regulation of K+in channel activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Estomas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Estomas de Plantas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
2.
Nature ; 462(7272): 514-7, 2009 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19940927

RESUMEN

Homocitrate is a component of the iron-molybdenum cofactor in nitrogenase, where nitrogen fixation occurs. NifV, which encodes homocitrate synthase (HCS), has been identified from various diazotrophs but is not present in most rhizobial species that perform efficient nitrogen fixation only in symbiotic association with legumes. Here we show that the FEN1 gene of a model legume, Lotus japonicus, overcomes the lack of NifV in rhizobia for symbiotic nitrogen fixation. A Fix(-) (non-fixing) plant mutant, fen1, forms morphologically normal but ineffective nodules. The causal gene, FEN1, was shown to encode HCS by its ability to complement a HCS-defective mutant of Saccharomyces cerevisiae. Homocitrate was present abundantly in wild-type nodules but was absent from ineffective fen1 nodules. Inoculation with Mesorhizobium loti carrying FEN1 or Azotobacter vinelandii NifV rescued the defect in nitrogen-fixing activity of the fen1 nodules. Exogenous supply of homocitrate also recovered the nitrogen-fixing activity of the fen1 nodules through de novo nitrogenase synthesis in the rhizobial bacteroids. These results indicate that homocitrate derived from the host plant cells is essential for the efficient and continuing synthesis of the nitrogenase system in endosymbionts, and thus provide a molecular basis for the complementary and indispensable partnership between legumes and rhizobia in symbiotic nitrogen fixation.


Asunto(s)
Genes Bacterianos , Genoma de Planta/genética , Lotus/genética , Lotus/metabolismo , Fijación del Nitrógeno/genética , Rhizobium/metabolismo , Simbiosis/genética , Azotobacter vinelandii , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Ácidos Cetoglutáricos/metabolismo , Lotus/enzimología , Datos de Secuencia Molecular , Mutación/genética , Oxo-Ácido-Liasas/deficiencia , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Ácidos Tricarboxílicos/metabolismo
3.
Plant J ; 56(3): 364-75, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18643969

RESUMEN

A blue-light photoreceptor in plants, phototropin, mediates phototropism, chloroplast relocation, stomatal opening, and leaf-flattening responses. Phototropin is divided into two functional moieties, the N-terminal photosensory and the C-terminal signaling moieties. Phototropin perceives light stimuli by the light, oxygen or voltage (LOV) domain in the N-terminus; the signal is then transduced intramolecularly to the C-terminal kinase domain. Two phototropins, phot1 and phot2, which have overlapping and distinct functions, exist in Arabidopsis thaliana. Phot1 mediates responses with higher sensitivity than phot2. Phot2 mediates specific responses, such as the chloroplast avoidance response and chloroplast dark positioning. To elucidate the molecular basis for the functional specificities of phot1 and phot2, we exchanged the N- and C-terminal moieties of phot1 and phot2, fused them to GFP and expressed them under the PHOT2 promoter in the phot1 phot2 mutant background. With respect to phototropism and other responses, the chimeric phototropin consisting of phot1 N-terminal and phot2 C-terminal moieties (P1n/2cG) was almost as sensitive as phot1; whereas the reverse combination (P2n/1cG) functioned with lower sensitivity. Hence, the N-terminal moiety mainly determined the sensitivity of the phototropins. Unexpectedly, both P1n/2cG and P2n/1cG mediated the chloroplast avoidance response, which is specific to phot2. Hence, chloroplast avoidance activity appeared to be suppressed specifically in the combination of N- and C-terminal moieties of phot1. Unlike the chloroplast avoidance response, chloroplast dark positioning was observed for P2G and P2n/1cG but not for P1G or P1n/2cG, suggesting that a specific structure in the N-terminal moiety of phot2 is required for this activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flavoproteínas/metabolismo , Fosfoproteínas/metabolismo , Fototropismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Criptocromos , Oscuridad , Flavoproteínas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/metabolismo , Immunoblotting , Microscopía Confocal , Fosfoproteínas/genética , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plásmidos , Proteínas Serina-Treonina Quinasas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA