Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(20): e0115222, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36173189

RESUMEN

Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.


Asunto(s)
Quirópteros , Virosis , Virus , Humanos , Animales , Antígeno 2 del Estroma de la Médula Ósea/genética , Antivirales , Receptores Toll-Like
2.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284399

RESUMEN

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Asunto(s)
Quirópteros/virología , Gammaretrovirus/aislamiento & purificación , Animales , Australia , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Phascolarctidae/virología
3.
Emerg Infect Dis ; 28(3): 693-704, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202527

RESUMEN

We identified and isolated a novel Hendra virus (HeV) variant not detected by routine testing from a horse in Queensland, Australia, that died from acute illness with signs consistent with HeV infection. Using whole-genome sequencing and phylogenetic analysis, we determined the variant had ≈83% nt identity with prototypic HeV. In silico and in vitro comparisons of the receptor-binding protein with prototypic HeV support that the human monoclonal antibody m102.4 used for postexposure prophylaxis and current equine vaccine will be effective against this variant. An updated quantitative PCR developed for routine surveillance resulted in subsequent case detection. Genetic sequence consistency with virus detected in grey-headed flying foxes suggests the variant circulates at least among this species. Studies are needed to determine infection kinetics, pathogenicity, reservoir-species associations, viral-host coevolution, and spillover dynamics for this virus. Surveillance and biosecurity practices should be updated to acknowledge HeV spillover risk across all regions frequented by flying foxes.


Asunto(s)
Quirópteros , Virus Hendra , Infecciones por Henipavirus , Enfermedades de los Caballos , Animales , Australia/epidemiología , Virus Hendra/genética , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Enfermedades de los Caballos/epidemiología , Caballos , Filogenia , Vigilancia de Guardia
4.
Mol Biol Evol ; 35(7): 1626-1637, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29617834

RESUMEN

Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here, we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.


Asunto(s)
Quirópteros/genética , Citosina Desaminasa/genética , Evolución Molecular , Interacciones Huésped-Patógeno , Animales , Quirópteros/metabolismo , Quirópteros/virología , VIH-1
5.
J Gen Virol ; 100(3): 403-413, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30688635

RESUMEN

Bats are the reservoir hosts for multiple viruses with zoonotic potential, including coronaviruses, paramyxoviruses and filoviruses. Urine collected from Australian pteropid bats was assessed for the presence of paramyxoviruses. One of the viruses isolated was Teviot virus (TevPV), a novel rubulavirus previously isolated from pteropid bat urine throughout the east coast of Australia. Here, we further characterize TevPV through analysis of whole-genome sequencing, growth kinetics, antigenic relatedness and the experimental infection of ferrets and mice. TevPV is phylogenetically and antigenically most closely related to Tioman virus (TioPV). Unlike many other rubulaviruses, cell receptor attachment by TevPV does not appear to be sialic acid-dependent, with the receptor for host cell entry being unknown. The infection of ferrets and mice suggested that TevPV has a low pathogenic potential in mammals. Infected ferrets seroconverted by 10 days post-infection without clinical signs of disease. Furthermore, infected ferrets did not shed virus in any respiratory secretions, suggesting a low risk of onward transmission of TevPV. No productive infection was observed in the mouse infection study.


Asunto(s)
Quirópteros/virología , Infecciones por Paramyxoviridae/veterinaria , Paramyxovirinae/aislamiento & purificación , Animales , Australia , Hurones , Genoma Viral , Ratones , Infecciones por Paramyxoviridae/virología , Paramyxovirinae/genética , Paramyxovirinae/patogenicidad , Paramyxovirinae/fisiología , Filogenia , Virulencia
6.
Proc Natl Acad Sci U S A ; 113(10): 2696-701, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903655

RESUMEN

Bats harbor many emerging and reemerging viruses, several of which are highly pathogenic in other mammals but cause no clinical signs of disease in bats. To determine the role of interferons (IFNs) in the ability of bats to coexist with viruses, we sequenced the type I IFN locus of the Australian black flying fox, Pteropus alecto, providing what is, to our knowledge, the first gene map of the IFN region of any bat species. Our results reveal a highly contracted type I IFN family consisting of only 10 IFNs, including three functional IFN-α loci. Furthermore, the three IFN-α genes are constitutively expressed in unstimulated bat tissues and cells and their expression is unaffected by viral infection. Constitutively expressed IFN-α results in the induction of a subset of IFN-stimulated genes associated with antiviral activity and resistance to DNA damage, providing evidence for a unique IFN system that may be linked to the ability of bats to coexist with viruses.


Asunto(s)
Quirópteros/genética , Perfilación de la Expresión Génica , Interferón Tipo I/genética , Interferón-alfa/genética , Animales , Secuencia de Bases , Línea Celular , Quirópteros/metabolismo , Quirópteros/virología , Mapeo Cromosómico , Evolución Molecular , Células HEK293 , Virus Hendra/fisiología , Interacciones Huésped-Patógeno , Humanos , Immunoblotting , Interferón Tipo I/metabolismo , Interferón-alfa/metabolismo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
7.
Emerg Infect Dis ; 24(7): 1285-1291, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29912712

RESUMEN

In August 2015, a nonhuman primate facility south of Manila, the Philippines, noted unusual deaths of 6 cynomolgus monkeys (Macaca fascicularis), characterized by generalized rashes, inappetence, or sudden death. We identified Reston ebolavirus (RESTV) infection in monkeys by using serologic and molecular assays. We isolated viruses in tissues from infected monkeys and determined viral genome sequences. RESTV found in the 2015 outbreak is genetically closer to 1 of the 4 RESTVs that caused the 2008 outbreak among swine. Eight macaques, including 2 also infected with RESTV, tested positive for measles. Concurrently, the measles virus was circulating throughout the Philippines, indicating that the infection of the macaques may be a reverse zoonosis. Improved biosecurity measures will minimize the public health risk, as well as limit the introduction of disease and vectors.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Ebolavirus , Fiebre Hemorrágica Ebola/veterinaria , Enfermedades de los Monos/epidemiología , Enfermedades de los Monos/virología , Animales , Enfermedades Transmisibles Emergentes/historia , Ebolavirus/clasificación , Ebolavirus/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XXI , Humanos , Macaca fascicularis/virología , Enfermedades de los Monos/historia , Filipinas/epidemiología , Filogenia
8.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931675

RESUMEN

Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis.IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection.


Asunto(s)
Perfilación de la Expresión Génica , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno , Factor de Transcripción AP-1/metabolismo , Animales , Línea Celular , Quirópteros , Ebolavirus/patogenicidad , Genes fos , Genes jun , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Riñón/citología , Riñón/virología , Fosforilación , Porcinos , Factor de Transcripción AP-1/genética , Proteínas Virales , Replicación Viral
9.
BMC Genomics ; 18(1): 388, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28521747

RESUMEN

BACKGROUND: Bats are an extremely successful group of mammals and possess a variety of unique characteristics, including their ability to co-exist with a diverse range of pathogens. The major histocompatibility complex (MHC) is the most gene dense and polymorphic region of the genome and MHC class II (MHC-II) molecules play a vital role in the presentation of antigens derived from extracellular pathogens and activation of the adaptive immune response. Characterisation of the MHC-II region of bats is crucial for understanding the evolution of the MHC and of the role of pathogens in shaping the immune system. RESULTS: Here we describe the relatively contracted MHC-II region of the Australian black flying-fox (Pteropus alecto), providing the first detailed insight into the MHC-II region of any species of bat. Twelve MHC-II genes, including one locus (DRB2) located outside the class II region, were identified on a single scaffold in the bat genome. The presence of a class II locus outside the MHC-II region is atypical and provides evidence for an ancient class II duplication block. Two non-classical loci, DO and DM and two classical, DQ and DR loci, were identified in P. alecto. A putative classical, DPB pseudogene was also identified. The bat's antigen processing cluster, though contracted, remains highly conserved, thus supporting its importance in antigen presentation and disease resistance. CONCLUSIONS: This detailed characterisation of the bat MHC-II region helps to fill a phylogenetic gap in the evolution of the mammalian class II region and is a stepping stone towards better understanding of the immune responses in bats to viral, bacterial, fungal and parasitic infections.


Asunto(s)
Quirópteros/genética , Genómica , Antígenos de Histocompatibilidad Clase II/genética , Filogenia , Animales , Secuencia Conservada , Evolución Molecular , Humanos , Ratones , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética
10.
BMC Genomics ; 18(1): 615, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28806913

RESUMEN

BACKGROUND: Nelson Bay orthoreovirus (NBV) is a fusogenic bat borne virus with an unknown zoonotic potential. Previous studies have shown that NBV can infect and replicate in a wide variety of cell types derived from their natural host (bat), as well as from human, mouse and monkey. Within permissive cells, NBV induced significant cytopathic effects characterised by cell-cell fusion and syncytia formation. To understand the molecular events that underpin NBV infection we examined the host transcriptome and proteome response of two cell types, derived from bat (PaKiT03) and mouse (L929), to characterise differential cellular susceptibility to NBV. RESULTS: Despite significant differences in NBV replication and cytopathic effects in the L929 and PaKiT03 cells, the host response was remarkably similar in these cells. At both the transcriptome and proteome level, the host response was dominated by IFN production and signalling pathways. The majority of proteins up-regulated in L929 and PaKiT03 cells were also up-regulated at the mRNA (gene) level, and included many important IFN stimulated genes. Further functional experimentation demonstrated that stimulating IFN signalling prior to infection, significantly reduced NBV replication in PaKiT03 cells. Moreover, inhibiting IFN signalling (through specific siRNAs) increased NBV replication in L929 cells. In line with the significant cytopathic effects seen in PaKiT03 cells, we also observed a down-regulation of genes involved in cell-cell junctions, which may be related to the fusogenic effects of NBV. CONCLUSIONS: This study provides new multi-dimensional insights into the host response of mammalian cells to NBV infection. We show that IFN activity is capable of reducing NBV replication, although it is unlikely that this is solely responsible for the reduced replication of NBV in L929 cells. The molecular events that underpin the fusogenic cytopathic effects described here will prove valuable for identifying potential therapeutic targets against fusogenic orthoreovirus.


Asunto(s)
Perfilación de la Expresión Génica , Orthoreovirus/fisiología , Proteómica , Animales , Línea Celular , Quirópteros/virología , Interferones/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Replicación Viral
11.
Vet Pathol ; 54(4): 649-660, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28494702

RESUMEN

Newcastle disease is an important disease of poultry caused by virulent strains of Newcastle disease virus (NDV). During the 1998 to 2002 outbreaks of Newcastle disease in Australia, it was observed that the mild clinical signs seen in some chickens infected with NDV did not correlate with the viruses' virulent fusion protein cleavage site motifs or standard pathogenicity indices. The pathogenicity of 2 Australian NDV isolates was evaluated in experimentally challenged chickens based on clinical evaluation, histopathology, immunohistochemistry, and molecular techniques. One of these virus isolates, Meredith/02, was shown to induce only very mild clinical signs with no mortalities in an experimental setting, in contrast to the velogenic Herts 33/56 and Texas GB isolates. This minimal pathogenicity was associated with decreased virus replication and antigen distribution in tissues. This demonstrates that the Australian Meredith/02 NDV, despite possessing a virulent fusion protein cleavage site, did not display a velogenic phenotype.


Asunto(s)
Pollos/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/patogenicidad , Enfermedades de las Aves de Corral/virología , Animales , Australia/epidemiología , Brotes de Enfermedades/veterinaria , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/patología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/patología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria
12.
Nucleic Acids Res ; 43(6): 3256-71, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25765644

RESUMEN

Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or 'silent' mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65-67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65-67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.


Asunto(s)
Transcriptasa Inversa del VIH/genética , VIH-1/efectos de los fármacos , VIH-1/genética , Mutación , Fármacos Anti-VIH/farmacología , Secuencia de Bases , Línea Celular , Codón , Farmacorresistencia Viral/genética , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/enzimología , Humanos , Mutación INDEL , ARN Viral/genética , Inhibidores de la Transcriptasa Inversa/farmacología
13.
J Gen Virol ; 97(3): 581-592, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26703878

RESUMEN

IFN-antagonist function is a major determinant of pathogenicity and cross-species infection by viruses, but remains poorly defined for many potentially zoonotic viruses resident in animal species. The paramyxovirus family contains several zoonotic viruses, including highly pathogenic viruses such as Nipah virus and Hendra virus, and an increasing number of largely uncharacterized animal viruses. Here, we report the characterization of IFN antagonism by the rodent viruses J virus (JPV) and Beilong virus (BeiPV) of the proposed genus Jeilongvirus of the paramyxoviruses. Infection of cells by JPV and BeiPV was found to inhibit IFN-activated nuclear translocation of signal transducer and activator of transcription 1 (STAT1). However, in contrast to most other paramyxoviruses, the JPV and BeiPV V proteins did not interact with or inhibit signalling by STAT1 or STAT2, suggesting that JPV/BeiPV use an atypical V protein-independent strategy to target STATs, consistent with their inclusion in a separate genus. Nevertheless, the V proteins of both viruses interacted with melanoma differentiation-associated protein 5 (MDA5) and robustly inhibited MDA5-dependent activation of the IFN-ß promoter. This supports a growing body of evidence that MDA5 is a universal target of paramyxovirus V proteins, such that the V-MDA5 interaction represents a potential target for broad-spectrum antiviral approaches.


Asunto(s)
Evasión Inmune , Infecciones por Paramyxoviridae/inmunología , Paramyxovirinae/inmunología , Proteínas Virales/inmunología , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/inmunología , Células HEK293 , Humanos , Helicasa Inducida por Interferón IFIH1 , Interferón-alfa/genética , Interferón-alfa/inmunología , Infecciones por Paramyxoviridae/genética , Infecciones por Paramyxoviridae/virología , Paramyxovirinae/clasificación , Paramyxovirinae/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/inmunología , Transducción de Señal , Proteínas Virales/genética
15.
BMC Genomics ; 15: 682, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25128405

RESUMEN

BACKGROUND: Bats are a major source of new and emerging viral diseases. Despite the fact that bats carry and shed highly pathogenic viruses including Ebola, Nipah and SARS, they rarely display clinical symptoms of infection. Host factors influencing viral replication are poorly understood in bats and are likely to include both pre- and post-transcriptional regulatory mechanisms. MicroRNAs are a major mechanism of post-transcriptional gene regulation, however very little is known about them in bats. RESULTS: This study describes 399 microRNAs identified by deep sequencing of small RNA isolated from tissues of the Black flying fox, Pteropus alecto, a confirmed natural reservoir of the human pathogens Hendra virus and Australian bat lyssavirus. Of the microRNAs identified, more than 100 are unique amongst vertebrates, including a subset containing mutations in critical seed regions. Clusters of rapidly-evolving microRNAs were identified, as well as microRNAs predicted to target genes involved in antiviral immunity, the DNA damage response, apoptosis and autophagy. Closer inspection of the predicted targets for several highly supported novel miRNA candidates suggests putative roles in host-virus interaction. CONCLUSIONS: MicroRNAs are likely to play major roles in regulating virus-host interaction in bats, via dampening of inflammatory responses (limiting the effects of immunopathology), and directly limiting the extent of viral replication, either through restricting the availability of essential factors or by controlling apoptosis. Characterisation of the bat microRNA repertoire is an essential step towards understanding transcriptional regulation during viral infection, and will assist in the identification of mechanisms that enable bats to act as natural virus reservoirs. This in turn will facilitate the development of antiviral strategies for use in humans and other species.


Asunto(s)
Quirópteros/genética , MicroARNs/genética , Animales , Secuencia de Bases , Sitios de Unión , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Intrones , Secuencias Invertidas Repetidas , Masculino , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Interferencia de ARN , Análisis de Secuencia de ARN , Homología de Secuencia de Ácido Nucleico
16.
PLoS Pathog ; 8(8): e1002836, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22879820

RESUMEN

The genus Henipavirus in the family Paramyxoviridae contains two viruses, Hendra virus (HeV) and Nipah virus (NiV) for which pteropid bats act as the main natural reservoir. Each virus also causes serious and commonly lethal infection of people as well as various species of domestic animals, however little is known about the associated mechanisms of pathogenesis. Here, we report the isolation and characterization of a new paramyxovirus from pteropid bats, Cedar virus (CedPV), which shares significant features with the known henipaviruses. The genome size (18,162 nt) and organization of CedPV is very similar to that of HeV and NiV; its nucleocapsid protein displays antigenic cross-reactivity with henipaviruses; and it uses the same receptor molecule (ephrin-B2) for entry during infection. Preliminary challenge studies with CedPV in ferrets and guinea pigs, both susceptible to infection and disease with known henipaviruses, confirmed virus replication and production of neutralizing antibodies although clinical disease was not observed. In this context, it is interesting to note that the major genetic difference between CedPV and HeV or NiV lies within the coding strategy of the P gene, which is known to play an important role in evading the host innate immune system. Unlike HeV, NiV, and almost all known paramyxoviruses, the CedPV P gene lacks both RNA editing and also the coding capacity for the highly conserved V protein. Preliminary study indicated that CedPV infection of human cells induces a more robust IFN-ß response than HeV.


Asunto(s)
Quirópteros/virología , Genoma Viral/inmunología , Infecciones por Henipavirus , Henipavirus , Evasión Inmune , Inmunidad Innata , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Australia , Quirópteros/inmunología , Hurones , Cobayas , Henipavirus/genética , Henipavirus/inmunología , Henipavirus/aislamiento & purificación , Infecciones por Henipavirus/sangre , Infecciones por Henipavirus/genética , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/virología , Humanos
17.
Retrovirology ; 10: 35, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23537098

RESUMEN

BACKGROUND: Betaretroviruses infect a wide range of species including primates, rodents, ruminants, and marsupials. They exist in both endogenous and exogenous forms and are implicated in animal diseases such as lung cancer in sheep, and in human disease, with members of the human endogenous retrovirus-K (HERV-K) group of endogenous betaretroviruses (ßERVs) associated with human cancers and autoimmune diseases. To improve our understanding of betaretroviruses in an evolutionarily distinct host species, we characterized ßERVs present in the genomes and transcriptomes of mega- and microbats, which are an important reservoir of emerging viruses. RESULTS: A diverse range of full-length ßERVs were discovered in mega- and microbat genomes and transcriptomes including the first identified intact endogenous retrovirus in a bat. Our analysis revealed that the genus Betaretrovirus can be divided into eight distinct sub-groups with evidence of cross-species transmission. Betaretroviruses are revealed to be a complex retrovirus group, within which one sub-group has evolved from complex to simple genomic organization through the acquisition of an env gene from the genus Gammaretrovirus. Molecular dating suggests that bats have contended with betaretroviral infections for over 30 million years. CONCLUSIONS: Our study reveals that a diverse range of betaretroviruses have circulated in bats for most of their evolutionary history, and cluster with extant betaretroviruses of divergent mammalian lineages suggesting that their distribution may be largely unrestricted by host species barriers. The presence of ßERVs with the ability to transcribe active viral elements in a major animal reservoir for viral pathogens has potential implications for public health.


Asunto(s)
Betaretrovirus/aislamiento & purificación , Retrovirus Endógenos/aislamiento & purificación , Animales , Betaretrovirus/clasificación , Betaretrovirus/genética , Quirópteros , Análisis por Conglomerados , ADN Viral/genética , Retrovirus Endógenos/clasificación , Retrovirus Endógenos/genética , Evolución Molecular , Filogenia , Análisis de Secuencia de ADN
18.
J Virol ; 86(8): 4288-93, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22318134

RESUMEN

Gammaretroviruses infect a wide range of vertebrate species where they are associated with leukemias, neurological diseases and immunodeficiencies. However, the origin of these infectious agents is unknown. Through a phylogenetic analysis of viral gene sequences, we show that bats harbor an especially diverse set of gammaretroviruses. In particular, phylogenetic analysis places Rhinolophus ferrumequinum retrovirus (RfRV), a new gammaretrovirus identified by de novo analysis of the Rhinolophus ferrumequinum transcriptome, and six other gammaretroviruses from different bat species, as basal to other mammalian gammaretroviruses. An analysis of the similarity in the phylogenetic history between the gammaretroviruses and their bat hosts provided evidence for both host-virus codivergence and cross-species transmission. Taken together, these data provide new insights into the origin of the mammalian gammaretroviruses.


Asunto(s)
Quirópteros/virología , Gammaretrovirus/genética , Animales , Evolución Molecular , Gammaretrovirus/clasificación , Orden Génico , Productos del Gen gag/genética , Productos del Gen pol/genética , Genoma Viral , Datos de Secuencia Molecular , Filogenia , Transcriptoma
19.
J Virol ; 86(15): 8014-30, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623774

RESUMEN

Herpesviruses or herpesviral sequences have been identified in various bat species. Here, we report the isolation, cell tropism, and complete genome sequence of a novel betaherpesvirus from the bat Miniopterus schreibersii (MsHV). In primary cell culture, MsHV causes cytopathic effects (CPE) and reaches peak virus production 2 weeks after infection. MsHV was found to infect and replicate less efficiently in a feline kidney cell, CRFK, and failed to replicate in 13 other cell lines tested. Sequencing of the MsHV genome using the 454 system, with a 224-fold coverage, revealed a genome size of 222,870 bp. The genome was extensively analyzed in comparison to those of related viruses. Of the 190 predicted open reading frames (ORFs), 40 were identified as herpesvirus core genes. Among 93 proteins with identifiable homologues in tree shrew herpesvirus (THV), human cytomegalovirus (HCMV), or rat cytomegalovirus (RCMV), most had highest sequence identities with THV counterparts. However, the MsHV genome organization is colinear with that of RCMV rather than that of THV. The following unique features were discovered in the MsHV genome. One predicted protein, B125, is similar to human herpesvirus 6 (HHV-6) U94, a homologue of the parvovirus Rep protein. For the unique ORFs, 7 are predicted to encode major histocompatibility complex (MHC)-related proteins, 2 to encode MHC class I homologues, and 3 to encode MHC class II homologues; 4 encode the homologues of C-type lectin- or natural killer cell lectin-like receptors;, and the products of a unique gene family, the b149 family, of 16 members, have no significant sequence identity with known proteins but exhibit immunoglobulin-like beta-sandwich domains revealed by three-dimensional (3D) structural prediction. To our knowledge, MsHV is the first virus genome known to encode MHC class II homologues.


Asunto(s)
Genoma Viral , Herpesviridae/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Lectinas Tipo C/genética , Sistemas de Lectura Abierta/genética , Proteínas Virales/genética , Animales , Gatos , Línea Celular , Quirópteros , Herpesviridae/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Proteínas Virales/metabolismo
20.
Virology ; 587: 109856, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541184

RESUMEN

Hendra virus (HeV) and Nipah virus (NiV) are henipaviruses that can cause fatal encephalitis in humans. Many animal models have been used to study henipavirus pathogenesis. In the mouse, HeV infection has previously shown that intranasal challenge can lead to neurological infection, however mice similarly challenged with NiV show no evidence of virus infecting the brain. We generated recombinant HeV (rHeV) and NiV (rNiV) where selected proteins were switched to examine their role in neuroinvasion in the mouse. These viruses displayed similar growth kinetics when compared to wildtype in vitro. In the mouse, infection outcomes with recombinant virus did not differ to infection outcomes of wildtype viruses. Virus was detected in the brain of 5/30 rHeV-challenged mice, but not rNiV-challenged mice. To confirm the permissiveness of mouse neurons to these viruses, primary mouse neurons were successfully infected in vitro, suggesting that other pathobiological factors contribute to the differences in disease outcomes in mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA