Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(20): 9999-10008, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31028147

RESUMEN

PD-1 blockade is a cancer immunotherapy effective in various types of cancer. In a fraction of treated patients, however, it causes rapid cancer progression called hyperprogressive disease (HPD). With our observation of HPD in ∼10% of anti-PD-1 monoclonal antibody (mAb)-treated advanced gastric cancer (GC) patients, we explored how anti-PD-1 mAb caused HPD in these patients and how HPD could be treated and prevented. In the majority of GC patients, tumor-infiltrating FoxP3highCD45RA-CD4+ T cells [effector Treg (eTreg) cells], which were abundant and highly suppressive in tumors, expressed PD-1 at equivalent levels as tumor-infiltrating CD4+ or CD8+ effector/memory T cells and at much higher levels than circulating eTreg cells. Comparison of GC tissue samples before and after anti-PD-1 mAb therapy revealed that the treatment markedly increased tumor-infiltrating proliferative (Ki67+) eTreg cells in HPD patients, contrasting with their reduction in non-HPD patients. Functionally, circulating and tumor-infiltrating PD-1+ eTreg cells were highly activated, showing higher expression of CTLA-4 than PD-1- eTreg cells. PD-1 blockade significantly enhanced in vitro Treg cell suppressive activity. Similarly, in mice, genetic ablation or antibody-mediated blockade of PD-1 in Treg cells increased their proliferation and suppression of antitumor immune responses. Taken together, PD-1 blockade may facilitate the proliferation of highly suppressive PD-1+ eTreg cells in HPDs, resulting in inhibition of antitumor immunity. The presence of actively proliferating PD-1+ eTreg cells in tumors is therefore a reliable marker for HPD. Depletion of eTreg cells in tumor tissues would be effective in treating and preventing HPD in PD-1 blockade cancer immunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/efectos adversos , Nivolumab/efectos adversos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias Gástricas/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Anciano , Animales , Antígeno CTLA-4/metabolismo , Progresión de la Enfermedad , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Masculino , Ratones , Neoplasias Gástricas/tratamiento farmacológico , Linfocitos T Reguladores/metabolismo
2.
Int Immunol ; 30(1): 13-22, 2018 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-29294043

RESUMEN

Cancer immunotherapy that blocks immune checkpoint molecules, such as PD-1/PD-L1, unleashes dysfunctional antitumor T-cell responses and has durable clinical benefits in various types of cancers. Yet its clinical efficacy is limited to a small proportion of patients, highlighting the need for identifying biomarkers that can predict the clinical response by exploring antitumor responses crucial for tumor regression. Here, we explored comprehensive immune-cell responses associated with clinical benefits using PBMCs from patients with malignant melanoma treated with anti-PD-1 monoclonal antibody. Pre- and post-treatment samples were collected from two different cohorts (discovery set and validation set) and subjected to mass cytometry assays that measured the expression levels of 35 proteins. Screening by high dimensional clustering in the discovery set identified increases in three micro-clusters of CD4+ T cells, a subset of central memory CD4+ T cells harboring the CD27+FAS-CD45RA-CCR7+ phenotype, after treatment in long-term survivors, but not in non-responders. The same increase was also observed in clinical responders in the validation set. We propose that increases in this subset of central memory CD4+ T cells in peripheral blood can be potentially used as a predictor of clinical response to PD-1 blockade therapy in patients with malignant melanoma.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Melanoma/tratamiento farmacológico , Nivolumab/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/inmunología , Linfocitos T CD4-Positivos/citología , Humanos , Melanoma/inmunología , Melanoma/patología , Fenotipo , Receptor de Muerte Celular Programada 1/sangre , Receptor de Muerte Celular Programada 1/inmunología
3.
J Immunother Cancer ; 9(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34446575

RESUMEN

BACKGROUND: Immune checkpoint blockade (ICB) induces durable clinical responses in patients with various types of cancer. However, its limited clinical efficacy requires the development of better approaches. In addition to immune checkpoint molecules, tumor-infiltrating immunosuppressive cells including regulatory T cells (Tregs) play crucial roles in the immune suppressive tumor microenvironment. While phosphatidylinositol 3-kinase (PI3K) inhibition as a Treg-targeted treatment has been implicated in animal models, its effects on human Tregs and on the potential impairment of effector T cells are required to be clarified for successful cancer immunotherapy. METHODS: The impact of a selective-PI3K inhibitor ZSTK474 with or without anti-programmed cell death 1 (PD-1) monoclonal antibody on Tregs and CD8+ T cells were examined with in vivo animal models and in vitro experiments with antigen specific and non-specific fashions using peripheral blood from healthy individuals and cancer patients. Phenotypes and functions of Tregs and effector T cells were examined with comprehensive gene and protein expression assays. RESULTS: Improved antitumor effects by the PI3K inhibitor in combination with ICB, particularly PD-1 blockade, were observed in mice and humans. Although administration of the PI3K inhibitor at higher doses impaired activation of CD8+ T cells as well as Tregs, the optimization (doses and timing) of this combination treatment selectively decreased intratumoral Tregs, resulting in increased tumor antigen-specific CD8+ T cells in the treated mice. Moreover, on the administration of the PI3K inhibitor with the optimal dose for selectively deleting Tregs, PI3K signaling was inhibited not only in Tregs but also in activated CD8+ T cells, leading to the enhanced generation of tumor antigen-specific memory CD8+ T cells which contributed to durable antitumor immunity. These opposing outcomes between Tregs and CD8+ T cells were attributed to the high degree of dependence on T cell signaling in the former but not in the latter. CONCLUSIONS: PI3K inhibitor in the combination with ICB with the optimized protocol fine-tuned T cell activation signaling for antitumor immunity via decreasing Tregs and optimizing memory CD8+ T cell responses, illustrating a promising combination therapy.


Asunto(s)
Inmunoterapia/métodos , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Transducción de Señal , Transfección , Microambiente Tumoral
4.
Sci Immunol ; 6(65): eabc6424, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767457

RESUMEN

PD-1 blockade exerts antitumor effects by reinvigorating tumor antigen­specific CD8+ T cells. Whereas neoantigens arising from gene alterations in cancer cells comprise critical tumor antigens in antitumor immunity, a subset of non­small cell lung cancers (NSCLCs) harboring substantial tumor mutation burden (TMB) lack CD8+ T cells in the tumor microenvironment (TME), which results in resistance to PD-1 blockade therapy. To overcome this resistance, clarifying the mechanism(s) impairing antitumor immunity in highly mutated NSCLCs is an urgent issue. Here, we showed that activation of the WNT/ß-catenin signaling pathway contributed to the development of a noninflamed TME in tumors with high TMB. NSCLCs that lacked immune cell infiltration into the TME despite high TMB preferentially up-regulated the WNT/ß-catenin pathway. Immunologic assays revealed that those patients harbored neoantigen-specific CD8+ T cells in the peripheral blood but not in the TME, suggesting impaired T cell infiltration into the TME due to the activation of WNT/ß-catenin signaling. In our animal models, the accumulation of gene mutations in cancer cells increased CD8+ T cell infiltration into the TME, thus slowing tumor growth. However, further accumulation of gene mutations blunted antitumor immunity by excluding CD8+ T cells from tumors in a WNT/ß-catenin signaling-dependent manner. Combined treatment with PD-1 blockade and WNT/ß-catenin signaling inhibitors induced better antitumor immunity than either treatment alone. Thus, we propose a mechanism-oriented combination therapy whereby immune checkpoint inhibitors can be combined with drugs that target cell-intrinsic oncogenic signaling pathways involved in tumor immune escape.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Escape del Tumor/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microambiente Tumoral/inmunología , Vía de Señalización Wnt/inmunología
5.
Sci Immunol ; 5(43)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005679

RESUMEN

The clinical efficacy of anti-PD-1 (programmed cell death-1) monoclonal antibody (mAb) against cancers with oncogenic driver gene mutations, which often harbor a low tumor mutation burden, is variable, suggesting different contributions of each driver mutation to immune responses. Here, we investigated the immunological phenotypes in the tumor microenvironment (TME) of epidermal growth factor receptor (EGFR)-mutated lung adenocarcinomas, for which anti-PD-1 mAb is largely ineffective. Whereas EGFR-mutated lung adenocarcinomas had a noninflamed TME, CD4+ effector regulatory T cells, which are generally present in the inflamed TME, showed high infiltration. The EGFR signal activated cJun/cJun N-terminal kinase and reduced interferon regulatory factor-1; the former increased CCL22, which recruits CD4+ regulatory T cells, and the latter decreased CXCL10 and CCL5, which induce CD8+ T cell infiltration. The EGFR inhibitor erlotinib decreased CD4+ effector regulatory T cells infiltration in the TME and in combination with anti-PD-1 mAb showed better antitumor effects than either treatment alone. Our results suggest that EGFR inhibitors when used in conjunction with anti-PD-1 mAb could increase the efficacy of immunotherapy in lung adenocarcinomas.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Mutación
6.
J Immunother Cancer ; 6(1): 106, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314524

RESUMEN

BACKGROUND: Several studies have established a correlation between the VEGF-VEGFR2 axis and an immunosuppressive microenvironment; this immunosuppression can be overcome by anti-angiogenic reagents, such as ramucirumab (RAM). However, little is known about the immunological impact of anti-angiogenic reagents within the tumor microenvironment in human clinical samples. This study aimed at investigating the effects of RAM on the tumor microenvironmental immune status in human cancers. METHODS: We prospectively enrolled 20 patients with advanced gastric cancer (GC) who received RAM-containing chemotherapy. We obtained paired samples from peripheral blood mononuclear cells (PBMCs) and tumor-infiltrating lymphocytes (TILs) in primary tumors both pre- and post-RAM therapy to assess immune profiles by immunohistochemistry and flow cytometry. RESULTS: Within the tumor microenvironment, both PD-L1 expression and CD8+ T-cell infiltration increased after RAM-containing therapies. In addition, CD45RA-FOXP3highCD4+ cells (effector regulatory T cells [eTreg cells]) and PD-1 expression by CD8+ T cells were significantly reduced in TILs compared with PBMCs after RAM-containing therapies. Patients with partial response and longer progression-free survival had significantly higher pre-treatment eTreg frequencies in TILs than those with progressive disease. In in vitro analysis, VEGFR2 was highly expressed by eTreg cells. Further, VEGFA promoted VEGFR2+ eTreg cell proliferation, and this effect could be inhibited by RAM. CONCLUSIONS: This study suggests that the frequency of eTreg cells in TILs could be a biomarker for stratifying clinical responses to RAM-containing therapies. Further, we propose that RAM may be employed as an immuno-modulator in combination with immune checkpoint blockade.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Anciano , Anticuerpos Monoclonales Humanizados , Linfocitos T CD8-positivos/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/inmunología , Neoplasias Gástricas/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Ramucirumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA