Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 60(1)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256410

RESUMEN

Background and Objectives: Caredyne ZIF-C is a novel, capsule-mixed zinc-containing prototype glass ionomer cement (GIC). Zinc ions are reported to inhibit root dentin demineralization, dentin collagen degradation, bacterial growth, acid production, and in vitro bacterial biofilm formation. However, the effectiveness of GICs against initial root caries lesions is unclear. Therefore, this study aimed to evaluate the efficacy of GICs, especially the new zinc-containing Caredyne ZIF-C GIC, as tooth-coating materials in patients with initial active root caries. Materials and Methods: A total of 58 lesions in 47 older adults (age > 65 years) were randomly allocated to one of the following three groups: Caredyne ZIF-C, Fuji VII (a conventional GIC), and sodium fluoride (NaF). All the lesions were treated with the assigned materials without removing the infected dentin, and the rates of dental plaque attachment and coating material fall-out were evaluated after 3, 6, and 12 months. The failure rate was defined as the number of teeth that needed restoration due to caries progression. Results: The plaque attachment rates tended to be lower in the material-coated root surfaces than in the healthy exposed root surfaces after 3, 6, and 12 months, although the differences among the three groups were not significant. Moreover, the coating material fall-out rate tended to be lower in the Caredyne ZIF-C group than in the Fuji VII group. There was no significant difference in the failure rate among the three groups at the 12 months mark. Conclusions: Though this pilot study offers a new direction for suppressing the progression of initial active root caries by controlling plaque attachment using GICs including Caredyne ZIF-C, clinical studies with a larger sample size are needed.


Asunto(s)
Caries Dental , Caries Radicular , Humanos , Anciano , Caries Radicular/prevención & control , Proyectos Piloto , Caries Dental/terapia , Estado de Salud , Zinc/farmacología , Zinc/uso terapéutico
2.
Curr Issues Mol Biol ; 44(11): 5691-5699, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421669

RESUMEN

The survival rate of root non-vital teeth is lower than that of vital teeth. Therefore, to preserve the dental pulp is very important. The vascular endothelial growth factor (VEGF) is the most potent angiogenic factor involved in the vitality of dental pulp including reparative dentin formation. Caffeic acid phenethyl ester (CAPE) is a physiologically active substance of propolis and has some bioactivities such as anti-inflammatory effects. However, there are no reports on the effects of CAPE on dental pulp inflammation. In this study, we investigated the effects of CAPE on VEGF and inflammatory cytokine production in human dental pulp cells (HDPCs) to apply CAPE to an ideal dental pulp protective agent. We found that CAPE induced VEGF production from HDPCs. Moreover, CAPE induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK), and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) in HDPCs. Furthermore, CAPE inhibited C-X-C motif chemokine ligand 10 (CXCL10) production in Pam3CSK4- and tumor necrosis factor-alpha (TNF-α)-stimulated HDPCs. In conclusion, these results suggest that CAPE might be useful as a novel biological material for vital pulp therapy by exerting the effects of VEGF production and anti-inflammatory activities.

3.
Biomed Res Int ; 2019: 5390720, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31930126

RESUMEN

Caffeic acid phenethyl ester (CAPE), the main component of propolis, has various biological activities including anti-inflammatory effect and wound healing promotion. Odontoblasts located in the outermost layer of dental pulp play crucial roles such as production of growth factors and formation of hard tissue termed reparative dentin in host defense against dental caries. In this study, we investigated the effects of CAPE on the upregulation of vascular endothelial growth factor (VEGF) and calcification activities of odontoblasts, leading to development of novel therapy for dental pulp inflammation caused by dental caries. CAPE significantly induced mRNA expression and production of VEGF in rat clonal odontoblast-like KN-3 cells cultured in normal medium or osteogenic induction medium. CAPE treatment enhanced nuclear factor-kappa B (NF-κB) transcription factor activation, and furthermore, the specific inhibitor of NF-κB significantly reduced VEGF production. The expression of VEGF receptor- (VEGFR-) 2, not VEGFR-1, was up regulated in KN-3 cells treated with CAPE. In addition, VEGF significantly increased mineralization activity in KN-3 cells. These findings suggest that CAPE might be useful as a novel biological material for the dental pulp conservative therapy.


Asunto(s)
Ácidos Cafeicos/farmacología , Odontoblastos/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Caries Dental/metabolismo , Calcificaciones de la Pulpa Dental/metabolismo , Proteínas I-kappa B/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo , Odontoblastos/metabolismo , Alcohol Feniletílico/farmacología , Própolis/metabolismo , Ratas , Activación Transcripcional/efectos de los fármacos
4.
Jpn Dent Sci Rev ; 54(3): 105-117, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30128058

RESUMEN

Odontoblasts located in the outermost layer of dental pulp form a natural barrier between mineralized tissues, dentin, and soft tissues, dental pulp, of the vital tooth, and they first recognize caries-related pathogens and sense external irritations. Therefore, odontoblasts possess a specialized innate immune system to fight oral pathogens invading into dentin. Generally, the rapid initial sensing of microbial pathogens, especially pathogen-associated molecular patterns (PAMPs) shared by microorganisms, are mediated by pattern recognition receptors (PRRs), such as Toll-like receptor and the nucleotide-binding oligomerization domain (NOD). The innate immune responses in odontoblasts initiated by sensing oral pathogens provide host protective events, such as inflammatory reactions, to produce a variety of pro-inflammatory mediators, including chemokines and cytokines. These attract various inflammatory cells and cause antibacterial reactions, such as the production of defensins, to kill microorganisms in the proximal region of the odontoblast layer. This review focuses on innate immunity, especially cellular and molecular mechanisms regarding the sensing of PAMPs from oral pathogens by PRRs, in odontoblasts and provides information for future studies for the development of novel therapeutic strategies, including diagnosis and treatment, to prevent exceeding dental pulp inflammation and preserve the dental pulp tissues.

5.
Biomed Res Int ; 2016: 9325436, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27747243

RESUMEN

Caries-related pathogens are first recognized by odontoblasts and induce inflammatory events that develop to pulpitis. Generally, initial sensing of microbial pathogens is mediated by pattern recognition receptors, such as Toll-like receptor and nucleotide-binding oligomerization domain (NOD); however, little is known about NODs in odontoblasts. In this study, the levels of NODs expressed in rat odontoblastic cell line, KN-3, were assessed by flow cytometry and the levels of chemokines in NOD-specific ligand-stimulated KN-3 cells were analyzed by real-time PCR and ELISA. The signal transduction pathway activated with NOD-specific ligand was assessed by blocking assay with specific inhibitors and reporter assay. In KN-3 cells, the expression level of NOD1 was stronger than that of NOD2 and the production of chemokines, such as CINC-1, CINC-2, CCL20, and MCP-1, was upregulated by stimulation with NOD1-specific ligand, but not with NOD2-specific ligand. CINC-2 and CCL20 production by stimulation with NOD1-specific ligand was reduced by p38 MAPK and AP-1 signaling inhibitors. Furthermore, the reporter assay demonstrated AP-1 activation in NOD1-specific ligand-stimulated KN-3 cells. These findings indicated that NOD1 expressed in odontoblasts functions to upregulate the chemokines expression via p38-AP-1 signaling pathway and suggested that NOD1 may play important roles in the initiation and progression of pulpitis.


Asunto(s)
Citocinas/inmunología , Pulpa Dental/citología , Pulpa Dental/inmunología , Inmunidad Innata/inmunología , Proteína Adaptadora de Señalización NOD1/inmunología , Odontoblastos/inmunología , Animales , Línea Celular , Mediadores de Inflamación/inmunología , Odontoblastos/citología , Ratas
6.
J Endod ; 40(9): 1382-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25146019

RESUMEN

INTRODUCTION: Marked infiltration of inflammatory cells such as activated T cells producing interferon-γ (IFN-γ) is observed in severe pulpitis. However, the roles of IFN-γ in the innate immune response of dental pulp have not been reported. Indoleamine 2, 3-dioxygenase (IDO) is a regulator of immune responses, and the IDO expression is induced by IFN-γ in many cells whose expression in dental pulp is unknown. The purpose of this study was to determine the role of IFN-γ in the immune response through microbial pattern recognition receptors (PRRs) such as Toll-like receptors or nucleotide-binding oligomerization domain-like receptors on the production of proinflammatory cytokines such as CXCL10 and interleukin (IL)-6 and the expression of IDO in cultured human dental pulp cells (HDPCs). METHODS: HDPCs were established from explant cultures of healthy pulp tissues. CXCL10 and IL-6 production was determined using enzyme-linked immunosorbent assay. Confirmation of IDO localization in dental pulp tissues was examined using immunohistochemistry. IDO expression in HDPCs was analyzed by immunoblot. RESULTS: IFN-γ significantly up-regulated CXCL10 and IL-6 production in the HDPCs stimulated with ligands for PRRs in a concentration-dependent manner. The expression of IDO was detected in inflamed pulp tissue. In addition, IFN-γ in combination with the PRR ligands enhanced IDO expression in HDPCs compared with IFN-γ alone. Moreover, CXCL10 production in IFN-γ-stimulated HDPCs was inhibited by an IDO inhibitor. CONCLUSIONS: This study showed the synergistic effects by IFN-γ on cytokine production and IDO expression in HDPCs, suggesting that IFN-γ may modulate the innate immune response of dental pulp.


Asunto(s)
Pulpa Dental/citología , Inmunidad Innata/inmunología , Factores Inmunológicos/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Interferón gamma/inmunología , Acetilmuramil-Alanil-Isoglutamina/farmacología , Adyuvantes Inmunológicos/farmacología , Células Cultivadas , Quimiocina CXCL10/inmunología , Pulpa Dental/inmunología , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/farmacología , Fibroblastos/inmunología , Humanos , Mediadores de Inflamación/inmunología , Interleucina-6/inmunología , Lipopéptidos/farmacología , Lipopolisacáridos/farmacología , Proteína Adaptadora de Señalización NOD1/agonistas , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Adaptadora de Señalización NOD2/agonistas , Proteína Adaptadora de Señalización NOD2/inmunología , Pulpitis/inmunología , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/inmunología
7.
Case Rep Dent ; 2014: 171657, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25386367

RESUMEN

The purpose of this study was to apply high-wattage pulsed irradiation of linearly polarized near-infrared light to the stellate ganglion area for burning mouth syndrome (BMS) and to assess the efficacy of the stellate ganglion area irradiation (SGR) on BMS using differential time-/frequency-domain parameters (D parameters). Three patients with BMS received high-wattage pulsed SGR; the response to SGR was evaluated by visual analogue scale (VAS) representing the intensity of glossalgia and D parameters used in heart rate variability analysis. High-wattage pulsed SGR significantly decreased the mean value of VAS in all cases without any adverse event such as thermal injury. D parameters mostly correlated with clinical condition of BMS. High-wattage pulsed SGR was safe and effective for the treatment of BMS; D parameters are useful for assessing efficacy of SGR on BMS.

8.
Life Sci ; 86(17-18): 654-60, 2010 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-20176036

RESUMEN

AIMS: In this study, we evaluated whether catechins could inhibit the expression of pro-inflammatory mediators induced by dental caries-related bacteria, Streptococci, or pathogen-associated molecular patterns (PAMPs) stimulation in human dental pulp fibroblasts (HDPF). We further determined the mechanisms of the anti-inflammatory activity of catechins. MAIN METHODS: Streptococci or PAMP-stimulated HDPF were treated with catechin, and then the expression and production of pro-inflammatory mediators were determined by RT-PCR and ELISA. Furthermore, the signal transduction pathways activated with toll-like receptor (TLR)2 ligand were assessed by Immunoblot and ELISA using blocking assay with specific inhibitors. KEY FINDINGS: Increased expressions of pro-inflammatory mediators are found in inflamed dental pulp, especially in HDPF. We recently reported that dental pulpal innate immune responses may mainly result from the predominantly-expressed TLR2 signaling. Catechins, polyphenolic compounds in green tea, exert protective and healing effects through multiple mechanisms, including antioxidative and anti-inflammatory effects. However, there are no reports concerning the effects of catechins on dental pulp. In this study, we demonstrated that the up-regulated expressions of IL-8 or PGE(2) in Streptococci or PAMP-stimulated HDPF were inhibited by catechins, (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG). In TLR2 ligand-stimulated HDPF, specific inhibitors of extracellular signal regulated kinase (ERK)1/2, p38, c-jun NH(2)-terminal kinase (SAP/JNK), NF-kappaB or catechins markedly reduced the level of pro-inflammatory mediators and the phosphorylation of these signal transduction molecules was suppressed by catechins. SIGNIFICANCE: These findings suggest that catechins might be useful therapeutically as an anti-inflammatory modulator of dental pulpal inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Catequina/análogos & derivados , Fibroblastos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Té/química , Catequina/farmacología , Células Cultivadas , Pulpa Dental/citología , Pulpa Dental/patología , Ensayo de Inmunoadsorción Enzimática , Fibroblastos/inmunología , Humanos , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Ligandos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Receptores de Reconocimiento de Patrones/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Streptococcus/inmunología , Receptor Toll-Like 2/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA