Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Cell ; 33(5): 1813-1827, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33665670

RESUMEN

Light-induced stomatal opening stimulates CO2 uptake and transpiration in plants. Weak blue light under strong red light effectively induces stomatal opening. Blue light-dependent stomatal opening initiates light perception by phototropins, and the signal is transmitted to a plasma membrane H+-ATPase in guard cells via BLUE LIGHT SIGNALING 1 (BLUS1) kinase. However, it is unclear how BLUS1 transmits the signal to H+-ATPase. Here, we characterized BLUS1 signaling in Arabidopsis thaliana, and showed that the BLUS1 C-terminus acts as an auto-inhibitory domain and that phototropin-mediated Ser-348 phosphorylation within the domain removes auto-inhibition. C-Terminal truncation and phospho-mimic Ser-348 mutation caused H+-ATPase activation in the dark, but did not elicit stomatal opening. Unexpectedly, the plants exhibited stomatal opening under strong red light and stomatal closure under weak blue light. A decrease in intercellular CO2 concentration via red light-driven photosynthesis together with H+-ATPase activation caused stomatal opening. Furthermore, phototropins caused H+-ATPase dephosphorylation in guard cells expressing constitutive signaling variants of BLUS1 in response to blue light, possibly for fine-tuning stomatal opening. Overall, our findings provide mechanistic insights into the blue light regulation of stomatal opening.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Dióxido de Carbono/farmacología , Luz , Fosfotransferasas/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Modelos Biológicos , Mutación/genética , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Fosfoserina/metabolismo , Fosfotransferasas/química , Fototropinas/metabolismo , Estomas de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Dominios Proteicos , ATPasas de Translocación de Protón/metabolismo
2.
Plant Cell Physiol ; 64(3): 352-362, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36631969

RESUMEN

The circadian clock allows plants to anticipate and adapt to periodic environmental changes. Organ- and tissue-specific properties of the circadian clock and shoot-to-root circadian signaling have been reported. While this long-distance signaling is thought to coordinate physiological functions across tissues, little is known about the feedback regulation of the root clock on the shoot clock in the hierarchical circadian network. Here, we show that the plant circadian clock conveys circadian information between shoots and roots through sucrose and K+. We also demonstrate that K+ transport from roots suppresses the variance of period length in shoots and then improves the accuracy of the shoot circadian clock. Sucrose measurements and qPCR showed that root sucrose accumulation was regulated by the circadian clock. Furthermore, root circadian clock genes, including PSEUDO-RESPONSE REGULATOR7 (PRR7), were regulated by sucrose, suggesting the involvement of sucrose from the shoot in the regulation of root clock gene expression. Therefore, we performed time-series measurements of xylem sap and micrografting experiments using prr7 mutants and showed that root PRR7 regulates K+ transport and suppresses variance of period length in the shoot. Our modeling analysis supports the idea that root-to-shoot signaling contributes to the precision of the shoot circadian clock. We performed micrografting experiments that illustrated how root PRR7 plays key roles in maintaining the accuracy of shoot circadian rhythms. We thus present a novel directional signaling pathway for circadian information from roots to shoots and propose that plants modulate physiological events in a timely manner through various timekeeping mechanisms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Relojes Circadianos/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ritmo Circadiano/fisiología , Transducción de Señal/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
3.
Plant Cell ; 32(7): 2325-2344, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354788

RESUMEN

Starch in Arabidopsis (Arabidopsis thaliana) guard cells is rapidly degraded at the start of the day by the glucan hydrolases α-AMYLASE3 (AMY3) and ß-AMYLASE1 (BAM1) to promote stomatal opening. This process is activated via phototropin-mediated blue light signaling downstream of the plasma membrane H+-ATPase. It remains unknown how guard cell starch degradation integrates with light-regulated membrane transport processes in the fine control of stomatal opening kinetics. We report that H+, K+, and Cl- transport across the guard cell plasma membrane is unaltered in the amy3 bam1 mutant, suggesting that starch degradation products do not directly affect the capacity to transport ions. Enzymatic quantification revealed that after 30 min of blue light illumination, amy3 bam1 guard cells had similar malate levels as the wild type, but had dramatically altered sugar homeostasis, with almost undetectable amounts of Glc. Thus, Glc, not malate, is the major starch-derived metabolite in Arabidopsis guard cells. We further show that impaired starch degradation in the amy3 bam1 mutant resulted in an increase in the time constant for opening of 40 min. We conclude that rapid starch degradation at dawn is required to maintain the cytoplasmic sugar pool, clearly needed for fast stomatal opening. The conversion and exchange of metabolites between subcellular compartments therefore coordinates the energetic and metabolic status of the cell with membrane ion transport.


Asunto(s)
Arabidopsis/citología , Arabidopsis/fisiología , Glucosa/metabolismo , Estomas de Plantas/fisiología , Almidón/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cloruros/metabolismo , Oscuridad , Luz , Malatos/metabolismo , Mutación , Fotosíntesis , Células Vegetales/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Protones
4.
Plant Cell Physiol ; 63(8): 1168-1176, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35786727

RESUMEN

Reactive oxygen species (ROS) play a central role in plant responses to biotic and abiotic stresses. ROS stimulate stomatal closure by inhibiting blue light (BL)-dependent stomatal opening under diverse stresses in the daytime. However, the stomatal opening inhibition mechanism by ROS remains unclear. In this study, we aimed to examine the impact of reactive carbonyl species (RCS), lipid peroxidation products generated by ROS, on BL signaling in guard cells. Application of RCS, such as acrolein and 4-hydroxy-(E)-2-nonenal (HNE), inhibited BL-dependent stomatal opening in the epidermis of Arabidopsis thaliana. Acrolein also inhibited H+ pumping and the plasma membrane H+-ATPase phosphorylation in response to BL. However, acrolein did not inhibit BL-dependent autophosphorylation of phototropins and the phosphorylation of BLUE LIGHT SIGNALING1 (BLUS1). Similarly, acrolein affected neither the kinase activity of BLUS1 nor the phosphatase activity of protein phosphatase 1, a positive regulator of BL signaling. However, acrolein inhibited fusicoccin-dependent phosphorylation of H+-ATPase and stomatal opening. Furthermore, carnosine, an RCS scavenger, partially alleviated the abscisic-acid- and hydrogen-peroxide-induced inhibition of BL-dependent stomatal opening. Altogether, these findings suggest that RCS inhibit BL signaling, especially H+-ATPase activation, and play a key role in the crosstalk between BL and ROS signaling pathways in guard cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Acroleína/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Luz , Estomas de Plantas/fisiología , ATPasas de Translocación de Protón/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(38): 19187-19192, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31484757

RESUMEN

Reactive oxygen species (ROS) function as key signaling molecules to inhibit stomatal opening and promote stomatal closure in response to diverse environmental stresses. However, how guard cells maintain basal intracellular ROS levels is not yet known. This study aimed to determine the role of autophagy in the maintenance of basal ROS levels in guard cells. We isolated the Arabidopsis autophagy-related 2 (atg2) mutant, which is impaired in stomatal opening in response to light and low CO2 concentrations. Disruption of other autophagy genes, including ATG5, ATG7, ATG10, and ATG12, also caused similar stomatal defects. The atg mutants constitutively accumulated high levels of ROS in guard cells, and antioxidants such as ascorbate and glutathione rescued ROS accumulation and stomatal opening. Furthermore, the atg mutations increased the number and aggregation of peroxisomes in guard cells, and these peroxisomes exhibited reduced activity of the ROS scavenger catalase and elevated hydrogen peroxide (H2O2) as visualized using the peroxisome-targeted H2O2 sensor HyPer. Moreover, such ROS accumulation decreased by the application of 2-hydroxy-3-butynoate, an inhibitor of peroxisomal H2O2-producing glycolate oxidase. Our results showed that autophagy controls guard cell ROS homeostasis by eliminating oxidized peroxisomes, thereby allowing stomatal opening.


Asunto(s)
Aminopeptidasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Estomas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Aminopeptidasas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas Relacionadas con la Autofagia/genética , Homeostasis , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal
6.
Plant J ; 104(3): 679-692, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32780529

RESUMEN

Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Luz , Mutación , Fosforilación , Fototropismo , Canales de Potasio/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética
7.
Proc Natl Acad Sci U S A ; 113(37): 10424-9, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27578868

RESUMEN

In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Fototropismo/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Embryophyta/crecimiento & desarrollo , Embryophyta/metabolismo , Luz , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fotosíntesis/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas
8.
Plant J ; 88(6): 907-920, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27545835

RESUMEN

Phototropin (phot1) is a blue light-activated plasma membrane-associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non-Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localized the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism. We used a non-invasive approach where PHOT1-GFP (P1-GFP) expression was targeted to the hypocotyl apex of the phot-deficient mutant using the promoters of CUP-SHAPED COTYLEDON 3 (CUC3) and AINTEGUMENTA (ANT). Expression of CUC3::P1-GFP was clearly visible at the hypocotyl apex, with weaker expression in the cotyledons, whereas ANT::P1-GFP was specifically targeted to the developing leaves. Both lines showed impaired curvature to 0.005 µmol m-2  sec-1 unilateral blue light, indicating that regions below the apical meristem are necessary for phototropism. Curvature was however apparent at higher fluence rates. Moreover, CUC3::P1-GFP partially or fully complemented petiole positioning, leaf flattening and chloroplast accumulation, but not stomatal opening. Yet, tissue analysis of NPH3 de-phosphorylation showed that CUC3::P1-GFP and ANT::P1-GFP mis-express very low levels of phot1 that likely account for this responsiveness. Our spatial targeting approach therefore excludes the hypocotyl apex as the site for light perception for phototropism and shows that phot1-mediated NPH3 de-phosphorylation is tissue autonomous and occurs more prominently in the basal hypocotyl.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fosfoproteínas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hipocótilo/genética , Fosfoproteínas/genética , Fosforilación/genética , Fosforilación/fisiología , Fototropismo/genética , Fototropismo/fisiología , Proteínas Serina-Treonina Quinasas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Cell Physiol ; 58(6): 1048-1058, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28407091

RESUMEN

Stomata within the plant epidermis regulate CO2 uptake for photosynthesis and water loss through transpiration. Stomatal opening in Arabidopsis thaliana is determined by various factors, including blue light as a signal and multiple phytohormones. Plasma membrane transporters, including H+-ATPase, K+ channels and anion channels in guard cells, mediate these processes, and the activities and expression levels of these components determine stomatal aperture. However, the regulatory mechanisms involved in these processes are not fully understood. In this study, we used infrared thermography to isolate a mutant defective in stomatal opening in response to light. The causative mutation was identified as an allele of the brassinosteroid (BR) biosynthetic mutant dwarf5. Guard cells from this mutant exhibited normal H+-ATPase activity in response to blue light, but showed reduced K+ accumulation and inward-rectifying K+ (K+in) channel activity as a consequence of decreased expression of major K+in channel genes. Consistent with these results, another BR biosynthetic mutant, det2-1, and a BR receptor mutant, bri1-6, exhibited reduced blue light-dependent stomatal opening. Furthermore, application of BR to the hydroponic culture medium completely restored stomatal opening in dwarf5 and det2-1 but not in bri1-6. However, application of BR to the epidermis of dwarf5 did not restore stomatal response. From these results, we conclude that endogenous BR acts in a long-term manner and is required in guard cells with the ability to open stomata in response to light, probably through regulation of K+in channel activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Estomas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Estomas de Plantas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
10.
Plant Physiol ; 171(4): 2731-43, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27261063

RESUMEN

Stomata open in response to a beam of weak blue light under strong red light illumination. A blue light signal is perceived by phototropins and transmitted to the plasma membrane H(+)-ATPase that drives stomatal opening. To identify the components in this pathway, we screened for mutants impaired in blue light-dependent stomatal opening. We analyzed one such mutant, provisionally named blus2 (blue light signaling2), and found that stomatal opening in leaves was impaired by 65%, although the magnitude of red light-induced opening was not affected. Blue light-dependent stomatal opening in the epidermis and H(+) pumping in guard cell protoplasts were inhibited by 70% in blus2 Whole-genome resequencing identified a mutation in the AHA1 gene of the mutant at Gly-602. T-DNA insertion mutants of AHA1 exhibited a similar phenotype to blus2; this phenotype was complemented by the AHA1 gene. We renamed blus2 as aha1-10 T-DNA insertion mutants of AHA2 and AHA5 did not show any impairment in stomatal response, although the transcript levels of AHA2 and AHA5 were higher than those of AHA1 in wild-type guard cells. Stomata in ost2, a constitutively active AHA1 mutant, did not respond to blue light. A decreased amount of H(+)-ATPase in aha1-10 accounted for the reduced stomatal blue light responses and the decrease was likely caused by proteolysis of misfolded AHA1. From these results, we conclude that AHA1 plays a major role in blue light-dependent stomatal opening in Arabidopsis and that the mutation made the AHA1 protein unstable in guard cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Membrana Celular/enzimología , Membrana Celular/efectos de la radiación , Luz , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , ATPasas de Translocación de Protón/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Membrana Celular/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Glicósidos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación/genética , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteolisis/efectos de los fármacos , Proteolisis/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Plant Cell Physiol ; 57(1): 152-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26707730

RESUMEN

Phototropins are light-activated receptor kinases that mediate a wide range of blue light responses responsible for the optimization of photosynthesis. Despite the physiological importance of phototropins, it is still unclear how they transduce light signals into physiological responses. Here, we succeeded in reproducing a primary step of phototropin signaling in vitro using a physiological substrate of phototropin, the BLUS1 (BLUE LIGHT SIGNALING1) kinase of guard cells. When PHOT1 and BLUS1 were expressed in Escherichia coli and the resulting recombinant proteins were incubated with ATP, white and blue light induced phosphorylation of BLUS1 but red light and darkness did not. Site-directed mutagenesis of PHOT1 and BLUS1 revealed that the phosphorylation was catalyzed by phot1 kinase. Similar to stomatal blue light responses, the BLUS1 phosphorylation depended on the fluence rate of blue light and was inhibited by protein kinase inhibitors, K-252a and staurosporine. In contrast to the result in vivo, BLUS1 was not dephosphorylated in vitro, suggesting the involvement of a protein phosphatase in the response in vivo. phot1 with a C-terminal kinase domain but devoid of the N-terminal domain, constitutively phosphorylated BLUS1 without blue light, indicating that the N-terminal domain has an autoinhibitory action and prevents substrate phosphorylation. The results provide the first reconstitution of a primary step of phototropin signaling and a clue for understanding the molecular nature of this process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fototransducción , Fosfoproteínas/metabolismo , Fosfotransferasas/metabolismo , Fototropinas/metabolismo , Estomas de Plantas/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Carbazoles/farmacología , Oscuridad , Alcaloides Indólicos/farmacología , Luz , Mutagénesis Sitio-Dirigida , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosforilación , Fosfotransferasas/genética , Fotosíntesis , Fototropinas/antagonistas & inhibidores , Fototropinas/genética , Fototropismo , Estomas de Plantas/genética , Estomas de Plantas/efectos de la radiación , Proteínas Serina-Treonina Quinasas , Proteínas Recombinantes
12.
J Plant Res ; 129(2): 167-74, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26780063

RESUMEN

In Arabidopsis thaliana, phototropins (phot1 and phot2), light-activated receptor kinases, redundantly regulate various photoresponses such as phototropism, chloroplast photorelocation movement, stomatal opening, and leaf flattening. However, it is still unclear how phot1 and phot2 signals are integrated into a common target and regulate physiological responses. In the present study, we provide evidence that phot1 and phot2 phosphorylate BLUE LIGHT SIGNALING1 (BLUS1) kinase as a common substrate in stomatal opening. Biochemical analysis revealed that the recombinant phot2 protein directly phosphorylated BLUS1 in vitro in a blue light-dependent manner, as reported for phot1. BLUS1 phosphorylation was observed in both phot1 and phot2 mutants, and phot2 mutant exhibited higher phosphorylation of BLUS1 than did phot1 mutant. Transgenic plants expressing phot1-GFP (P1G) and phot2-GFP (P2G) at a similar level under the PHOT2 promoter demonstrated that P1G initiated higher phosphorylation of BLUS1 than P2G, suggesting that phot1 phosphorylates BLUS1 more efficiently. Similarly, P1G mediated a higher activation of the plasma membrane H(+)-ATPase and stomatal opening than P2G, indicating that the phosphorylation status of BLUS1 is a key determinant of physiological response. Together, these findings provide insights into the signal integration and different properties of phot1 and phot2 signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fototransducción , Fosfoproteínas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Genes Reporteros , Luz , Fosfoproteínas/genética , Fosforilación , Fosfotransferasas , Fototropinas/genética , Fototropinas/metabolismo , Fototropismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes de Fusión
13.
Nat Commun ; 15(1): 1195, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378726

RESUMEN

Plasma membrane H+-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H+-ATPase activation and stomatal opening in Arabidopsis thaliana. Using phosphoproteome analysis, we show that blue light induces the phosphorylation of Thr-881 within the C-terminal region I, in addition to penultimate Thr-948 in AUTOINHIBITED H+-ATPASE 1 (AHA1). Based on site-directed mutagenesis experiments, phosphorylation of both Thr residues is essential for H+ pumping and stomatal opening in response to blue light. Thr-948 phosphorylation is a prerequisite for Thr-881 phosphorylation by blue light. Additionally, red light-driven guard cell photosynthesis induces Thr-881 phosphorylation, possibly contributing to red light-dependent stomatal opening. Our findings provide mechanistic insights into H+-ATPase activation that exploits the ion transport across the plasma membrane and light signalling network in guard cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosforilación , Luz , Estomas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Membrana Celular/metabolismo
14.
Plant Cell Physiol ; 54(1): 36-47, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22739508

RESUMEN

We investigated the roles of the blue light receptors phototropins (phot1 and phot2) and ROOT PHOTOTROPISM 2 (RPT2) in leaf positioning and flattening, and plant growth under weak, moderate and strong white light (10, 25 and 70 µmol m(-2 )s(-1)). RPT2 mediated leaf positioning and flattening, and enhanced plant growth in a phot1-dependent manner. Under weak light, phot1 alone controls these responses. Under moderate and strong light, both phot1 and phot2 affect the responses. These results indicate that plants utilize a wide range of light intensities through phot1 and phot2 to optimize plant growth. The rpt2 single mutant generally exhibited phenotypes that resembled those of the phot1 phot2 double mutant. To our surprise, when the PHOT1 gene was disrupted in the rpt2 mutant, the resulting phot1 rpt2 double mutant showed the morphology of the wild-type plant under strong light, and additional disruption of PHOT2 in the double mutant abolished this recovery. This suggested that phot2 may function in the absence of phot1 and bypass RPT2 to transmit the signal to downstream elements. Expression and light-induced autophosphorylation of phot2 were not affected in the rpt2 mutant. We conclude that RPT2 mediates leaf flattening and positioning in a phot1-dependent manner, and that phot1 may inhibit the phot2 signaling pathways. We discuss the functional role of RPT2 in phototropin signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fosfoproteínas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cotiledón/genética , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Fosfoproteínas/genética , Fosforilación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Serina-Treonina Quinasas
15.
Plant Cell Physiol ; 54(1): 24-35, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22585556

RESUMEN

Protein phosphatase 1 (PP1) is a eukaryotic serine/threonine protein phosphatase comprised of a catalytic subunit (PP1c) and a regulatory subunit that modulates catalytic activity, subcellular localization and substrate specificity. PP1c positively regulates stomatal opening through blue light signaling between phototropins and the plasma membrane H(+)-ATPase in guard cells. However, the regulatory subunit functioning in this process is unknown. We identified Arabidopsis PRSL1 (PP1 regulatory subunit2-like protein1) as a regulatory subunit of PP1c. Tautomycin, a selective inhibitor of PP1c, inhibited blue light responses of stomata in the single mutants phot1 and phot2, supporting the idea that signals from phot1 and phot2 converge on PP1c. We obtained PRSL1 based on the sequence similarity to Vicia faba PRS2, a PP1c-binding protein isolated by a yeast two-hybrid screen. PRSL1 bound to Arabidopsis PP1c through its RVxF motif, a consensus PP1c-binding sequence. Arabidopsis prsl1 mutants were impaired in blue light-dependent stomatal opening, H(+) pumping and phosphorylation of the H(+)-ATPase, but showed normal phototropin activities. PRSL1 complemented the prsl1 phenotype, but not if the protein carried a mutation in the RVxF motif, suggesting that PRSL1 functions through binding PP1c via the RVxF motif. PRSL1 did not affect the catalytic activity of Arabidopsis PP1c but it stimulated the localization of PP1c in the cytoplasm. We conclude that PRSL1 functions as a regulatory subunit of PP1 and regulates blue light signaling in stomata.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Secuencias de Aminoácidos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Secuencia de Bases , Luz , Datos de Secuencia Molecular , Mutación , Fosfoproteínas/metabolismo , Filogenia , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Piranos/farmacología , Transducción de Señal , Compuestos de Espiro/farmacología , Vicia faba/química
16.
Biochem J ; 435(1): 73-83, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21222654

RESUMEN

PP1 (protein phosphatase 1) is among the most conserved enzymes known, with one or more isoforms present in all sequenced eukaryotic genomes. PP1 dephosphorylates specific serine/threonine phosphoproteins as defined by associated regulatory or targeting subunits. In the present study we performed a PP1-binding screen to find putative PP1 interactors in Arabidopsis thaliana and uncovered a homologue of the ancient PP1 interactor, I-2 (inhibitor-2). Bioinformatic analysis revealed remarkable conservation of three regions of plant I-2 that play key roles in binding to PP1 and regulating its function. The sequence-related properties of plant I-2 were compared across eukaryotes, indicating a lack of I-2 in some species and the emergence points from key motifs during the evolution of this ancient regulator. Biochemical characterization of AtI-2 (Arabidopsis I-2) revealed its ability to inhibit all plant PP1 isoforms and inhibitory dependence requiring the primary interaction motif known as RVXF. Arabidopsis I-2 was shown to be a phosphoprotein in vivo that was enriched in the nucleus. TAP (tandem affinity purification)-tag experiments with plant I-2 showed in vivo association with several Arabidopsis PP1 isoforms and identified other potential I-2 binding proteins.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteína Fosfatasa 1/química , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Biología Computacional/métodos , Bases de Datos de Proteínas , Datos de Secuencia Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Estructuras de las Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/aislamiento & purificación , Proteína Fosfatasa 1/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
17.
PNAS Nexus ; 1(2): pgac030, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36713324

RESUMEN

Plant cells perceive cold temperatures and initiate cellular responses to protect themselves against cold stress, but which cellular compartment mediates cold sensing has been unknown. Chloroplasts change their position in response to cold to optimize photosynthesis in plants in a process triggered by the blue-light photoreceptor phototropin (phot), which thus acts as a cold-sensing molecule. However, phot in plant cells is present in multiple cellular compartments, including the plasma membrane (PM), cytosol, Golgi apparatus, and chloroplast periphery, making it unclear where phot perceives cold and activates this cold-avoidance response. Here, we produced genetically encoded and modified variants of phot that localize only to the cytosol or the PM and determined that only PM-associated phot-induced cold avoidance in the liverwort Marchantia polymorpha. These results indicate that the phot localized to the PM constitutes a cellular compartment for cold sensing in plants.

18.
Nat Commun ; 13(1): 7493, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470866

RESUMEN

Although light is essential for photosynthesis, it has the potential to elevate intracellular levels of reactive oxygen species (ROS). Since high ROS levels are cytotoxic, plants must alleviate such damage. However, the cellular mechanism underlying ROS-induced leaf damage alleviation in peroxisomes was not fully explored. Here, we show that autophagy plays a pivotal role in the selective removal of ROS-generating peroxisomes, which protects plants from oxidative damage during photosynthesis. We present evidence that autophagy-deficient mutants show light intensity-dependent leaf damage and excess aggregation of ROS-accumulating peroxisomes. The peroxisome aggregates are specifically engulfed by pre-autophagosomal structures and vacuolar membranes in both leaf cells and isolated vacuoles, but they are not degraded in mutants. ATG18a-GFP and GFP-2×FYVE, which bind to phosphatidylinositol 3-phosphate, preferentially target the peroxisomal membranes and pre-autophagosomal structures near peroxisomes in ROS-accumulating cells under high-intensity light. Our findings provide deeper insights into the plant stress response caused by light irradiation.


Asunto(s)
Macroautofagia , Peroxisomas , Especies Reactivas de Oxígeno/metabolismo , Peroxisomas/metabolismo , Autofagia/fisiología , Hojas de la Planta/metabolismo
19.
Plant Physiol ; 153(4): 1555-62, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20498335

RESUMEN

Stomata open in response to blue light under a background of red light. The plant hormone abscisic acid (ABA) inhibits blue light-dependent stomatal opening, an effect essential for promoting stomatal closure in the daytime to prevent water loss. However, the mechanisms and molecular targets of this inhibition in the blue light signaling pathway remain unknown. Here, we report that phosphatidic acid (PA), a phospholipid second messenger produced by ABA in guard cells, inhibits protein phosphatase 1 (PP1), a positive regulator of blue light signaling, and PA plays a role in stimulating stomatal closure in Vicia faba. Biochemical analysis revealed that PA directly inhibited the phosphatase activity of the catalytic subunit of V. faba PP1 (PP1c) in vitro. PA inhibited blue light-dependent stomatal opening but did not affect red light- or fusicoccin-induced stomatal opening. PA also inhibited blue light-dependent H(+) pumping and phosphorylation of the plasma membrane H(+)-ATPase. However, PA did not inhibit the autophosphorylation of phototropins, blue light receptors for stomatal opening. Furthermore, 1-butanol, a selective inhibitor of phospholipase D, which produces PA via hydrolysis of phospholipids, diminished the ABA-induced inhibition of blue light-dependent stomatal opening and H(+) pumping. We also show that hydrogen peroxide and nitric oxide, which are intermediates in ABA signaling, inhibited the blue light responses of stomata and that 1-butanol diminished these inhibitions. From these results, we conclude that PA inhibits blue light signaling in guard cells by PP1c inhibition, accelerating stomatal closure, and that PP1 is a cross talk point between blue light and ABA signaling pathways in guard cells.


Asunto(s)
Ácidos Fosfatidicos/farmacología , Estomas de Plantas/efectos de la radiación , Proteína Fosfatasa 1/metabolismo , Vicia faba/fisiología , 1-Butanol/farmacología , Ácido Abscísico/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz , Datos de Secuencia Molecular , Óxido Nítrico/metabolismo , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Vicia faba/enzimología
20.
Plant Cell Physiol ; 51(7): 1186-96, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20516032

RESUMEN

Stomatal opening, which is mediated by blue light receptor phototropins, is driven by activation of the plasma membrane H(+)-ATPase via phosphorylation of the penultimate threonine in the C-terminus and subsequent binding of a 14-3-3 protein. However, the biochemical properties of the protein kinase and protein phosphatase for H(+)-ATPase are largely unknown. We therefore investigated in vitro phosphorylation and dephosphorylation of H(+)-ATPase. H(+)-ATPase was phosphorylated in vitro on the penultimate threonine in the C-terminus in isolated microsomes from guard cell protoplasts of Vicia faba. Phosphorylated H(+)-ATPase was dephosphorylated in vitro, and the dephosphorylation was inhibited by EDTA, a divalent cation chelator, but not by calyculin A, an inhibitor of type 1 and 2A protein phosphatases. Essentially the same results were obtained in purified plasma membranes from etiolated Arabidopsis seedlings, indicating that a similar protein kinase and phosphatase are involved in plant cells. Further analyses revealed that phosphorylation of the H(+)-ATPase is insensitive to K-252a, a potent inhibitor of protein kinase, and is hypersensitive to Triton X-100, a non-ionic detergent. Moreover, dephosphorylation required Mg(2+) but not Ca(2+), and protein phosphatase was localized in the 1% Triton X-100-insoluble fraction. These results demonstrate that a protein kinase-phosphatase pair, K-252a-insensitive protein kinase and Mg(2+)-dependent type 2C protein phosphatase, co-localizes at least in part with the H(+)-ATPase in the plasma membrane and regulates the phosphorylation status of the penultimate threonine of the H(+)-ATPase.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Vicia faba/enzimología , Arabidopsis/enzimología , Carbazoles/farmacología , Ácido Edético/farmacología , Alcaloides Indólicos/farmacología , Luz , Magnesio/metabolismo , Microsomas/enzimología , Octoxinol/farmacología , Fosforilación , Estomas de Plantas/enzimología , Proteína Fosfatasa 2C , Protoplastos/enzimología , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA