Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282011

RESUMEN

The phytohormone abscisic acid (ABA) plays a major role in abiotic stress responses in plants, and subclass III SNF1-related protein kinase 2 (SnRK2) kinases mediate ABA signaling. In this study, we identified Raf36, a group C Raf-like protein kinase in Arabidopsis, as a protein that interacts with multiple SnRK2s. A series of reverse genetic and biochemical analyses revealed that 1) Raf36 negatively regulates ABA responses during postgermination growth, 2) the N terminus of Raf36 is directly phosphorylated by SnRK2s, and 3) Raf36 degradation is enhanced in response to ABA. In addition, Raf22, another C-type Raf-like kinase, functions partially redundantly with Raf36 to regulate ABA responses. A comparative phosphoproteomic analysis of ABA-induced responses of wild-type and raf22raf36-1 plants identified proteins that are phosphorylated downstream of Raf36 and Raf22 in planta. Together, these results support a model in which Raf36/Raf22 function mainly under optimal conditions to suppress ABA responses, whereas in response to ABA, the SnRK2 module promotes Raf36 degradation as a means of alleviating Raf36-dependent inhibition and allowing for heightened ABA signaling to occur.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
2.
Physiol Plant ; 175(2): e13898, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36974502

RESUMEN

Low-molecular-weight sugars serve as protectants for cellular membranes and macromolecules under the condition of dehydration caused by environmental stress such as desiccation and freezing. These sugars also affect plant growth and development by provoking internal signaling pathways. We previously showed that both sugars and the stress hormone abscisic acid (ABA) enhance desiccation tolerance of gemma, a dormant propagule of the liverwort Marchantia polymorpha. To determine the role of ABA in sugar responses in liverworts, we generated genome-editing lines of M. polymorpha ABA DEFICIENT 1 (MpABA1) encoding zeaxanthin epoxidase, which catalyzes the initial reaction toward ABA biosynthesis. The generated Mpaba1 lines that accumulated only a trace amount of endogenous ABA showed reduced desiccation tolerance and reduced sugar responses. RNA-seq analysis of sucrose-treated gemmalings of M. polymorpha revealed that expression of a large part of sucrose-induced genes was reduced in Mpaba1 compared to the wild-type. Furthermore, Mpaba1 accumulated smaller amounts of low-molecular-weight sugars in tissues upon sucrose treatment than the wild-type, with reduced expression of genes for sucrose synthesis, sugar transporters, and starch-catabolizing enzymes. These results indicate that endogenous ABA plays a role in the regulation of the positive feedback loop for sugar-induced sugar accumulation in liverworts, enabling the tissue to have desiccation tolerance.


Asunto(s)
Ácido Abscísico , Marchantia , Ácido Abscísico/metabolismo , Marchantia/genética , Marchantia/metabolismo , Azúcares/metabolismo , Desecación , Sacarosa/metabolismo
3.
Biochem Biophys Res Commun ; 637: 93-99, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36384069

RESUMEN

Land plants exhibit various adaptation responses to unfavorable water environments, such as drought and flooding. The phytohormone abscisic acid (ABA) and ethylene play essential roles in plant adaptation to drought and flooding, respectively. It remains largely unknown how plants integrate environmental information for water availability. In the moss Physcomitrium patens, we recently reported that not only ethylene/flooding signaling but also ABA/osmostress signaling are mediated by ethylene receptor-related sensor histidine kinases (ETR-HKs). Subfamily I ETR-HKs of this moss were found to interact with a RAF kinase (ARK) and were required for ABA-dependent activation of SNF1-related protein kinase 2 (SnRK2) via ARK activation. To elucidate the mechanisms of ARK regulation by ETR-HKs, here we employed targeted in vivo mutagenesis of PpHK5, a member of subfamily I ETR-HKs. Analyses of ABA-insensitive Pphk5 mutants indicated that PpHK5 mutations affecting the interaction with ARK resulted in loss of PpHK5 function to activate ABA signaling. We also identified a PpHK5 mutation that does not affect ARK interaction but resulted in loss of PpHK5 function. These results suggest that physical interaction between ETR-HK and ARK is essential but not sufficient for the regulation of ARK activity, and the C-terminal response regulator domain is involved in regulating ARK activation.


Asunto(s)
Bryopsida , Histidina Quinasa/genética , Bryopsida/genética , Mutagénesis , Mutación , Etilenos , Ácido Abscísico
4.
Plant Physiol ; 185(2): 533-546, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33655297

RESUMEN

The Raf-like protein kinase abscisic acid (ABA) and abiotic stress-responsive Raf-like kinase (ARK) previously identified in the moss Physcomitrium (Physcomitrella) patens acts as an upstream regulator of subgroup III SNF1-related protein kinase2 (SnRK2), the key regulator of ABA and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2, including the role of ABA receptor-associated group A PP2C (PP2C-A), are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic P. patens ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance, and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in the wild type (WT). The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking protein phosphatase 2C-A (PP2C-A) was similar to that in the WT, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense mutant lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. Therefore, ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototype mechanism for ABA and abiotic stress responses in plants.


Asunto(s)
Ácido Abscísico/farmacología , Bryopsida/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Bryopsida/enzimología , Bryopsida/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Congelación , Regulación de la Expresión Génica de las Plantas , Fusión Génica , Genes Reporteros , Mutación Missense , Fosfopéptidos/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estrés Fisiológico
5.
Plant J ; 103(2): 634-644, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32239564

RESUMEN

Given their sessile nature, land plants must use various mechanisms to manage dehydration under water-deficit conditions. Osmostress-induced activation of the SNF1-related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance-like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress-responsive Raf-like kinases (AtARKs) of the B3 clade of the mitogen-activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2-mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress-induced subclass III SnRK2 activity. Our findings identify a specific type of B3-MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Presión Osmótica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Quinasas raf/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/enzimología , Reguladores del Crecimiento de las Plantas/metabolismo , Estomas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Agua/metabolismo
6.
Plant Physiol ; 179(1): 317-328, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30442644

RESUMEN

Abscisic acid (ABA) controls seed dormancy and stomatal closure through binding to the intracellular receptor Pyrabactin resistance1 (Pyr1)/Pyr1-like/regulatory components of ABA receptors (PYR/PYL/RCAR) in angiosperms. Genes encoding PYR/PYL/RCAR are thought to have arisen in the ancestor of embryophytes, but the roles of the genes in nonvascular plants have not been determined. In the liverwort Marchantia polymorpha, ABA reduces growth and enhances desiccation tolerance through increasing accumulation of intracellular sugars and various transcripts such as those of Late Embryogenesis Abundant (LEA)-like genes. In this study, we analyzed a gene designated MpPYL1, which is closely related to PYR/PYL/RCAR of angiosperms, in transgenic liverworts. Transgenic lines overexpressing MpPYL1-GFP showed ABA-hypersensitive growth with enhanced desiccation tolerance, whereas Mppyl1 generated by CRISPR-Cas9-mediated genome editing showed ABA-insensitive growth with reduced desiccation tolerance. Transcriptome analysis indicated that MpPYL1 is a major regulator of abiotic stress-associated genes, including all 35 ABA-induced LEA-like genes. Furthermore, these transgenic plants showed altered responses to extracellular Suc, suggesting that ABA and PYR/PYL/RCAR function in sugar responses. The results presented here reveal an important role of PYR/PYL/RCAR in the ABA response, which was likely acquired in the common ancestor of land plants. The results also indicate the archetypal role of ABA and its receptor in sugar response and accumulation processes for vegetative desiccation tolerance in bryophytes.


Asunto(s)
Ácido Abscísico/fisiología , Hepatophyta/metabolismo , Proteínas de Plantas/fisiología , Receptores de Superficie Celular/fisiología , Ácido Abscísico/metabolismo , Desecación , Perfilación de la Expresión Génica , Hepatophyta/genética , Hepatophyta/crecimiento & desarrollo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
7.
Plant Cell Environ ; 43(12): 2894-2911, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33459424

RESUMEN

The plant hormone abscisic acid (ABA) is fundamental for land plant adaptation to water-limited conditions. Osmostress, such as drought, induces ABA accumulation in angiosperms, triggering physiological responses such as stomata closure. The core components of angiosperm ABA signalling are soluble ABA receptors, group A protein phosphatase type 2C and SNF1-related protein kinase2 (SnRK2). ABA also has various functions in non-angiosperms, however, suggesting that its role in adaptation to land may not have been angiosperm-specific. Indeed, among land plants, the core ABA signalling components are evolutionarily conserved, implying their presence in a common ancestor. Results of ongoing functional genomics studies of ABA signalling components in bryophytes and algae have expanded our understanding of the evolutionary role of ABA signalling, with genome sequencing uncovering the ABA core module even in algae. In this review, we describe recent discoveries involving the ABA core module in non-angiosperms, tracing the footprints of how ABA evolved as a phytohormone. We also cover the latest findings on Raf-like kinases as upstream regulators of the core ABA module component SnRK2. Finally, we discuss the origin of ABA signalling from an evolutionary perspective.


Asunto(s)
Ácido Abscísico/metabolismo , Evolución Biológica , Magnoliopsida/fisiología , Presión Osmótica/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Transducción de Señal/fisiología , Magnoliopsida/genética , Magnoliopsida/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo
8.
Plant J ; 94(4): 699-708, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29575231

RESUMEN

Abscisic acid (ABA) and its signaling system are important for land plants to survive in terrestrial conditions. Here, we took a phosphoproteomic approach to elucidate the ABA signaling network in Physcomitrella patens, a model species of basal land plants. Our phosphoproteomic analysis detected 4630 phosphopeptides from wild-type P. patens and two ABA-responsive mutants, a disruptant of group-A type-2C protein phosphatase (PP2C; ppabi1a/b) and AR7, a defective mutant in ARK, identified as an upstream regulator of SnRK2. Quantitative analysis detected 143 ABA-responsive phosphopeptides in P. patens. The analysis indicated that SnRK2-mediated phosphorylation and target motifs were partially conserved in bryophytes. Our data demonstrate that the PpSnRK2B and AREB/ABF-type transcription factors are phosphorylated in vivo in response to ABA under the control of ARK. On the other hand, our data also revealed the following: (i) the entire ABA-responsive phosphoproteome in P. patens is quite diverse; (ii) P. patens PP2C affects additional pathways other than the known ABA signaling pathway; and (iii) ARK is mainly involved in ABA signaling. Taken together, we propose that the core ABA signaling pathway is essential in all land plants; however, some ABA-responsive phosphosignaling uniquely developed in bryophytes during the evolutionary process.


Asunto(s)
Ácido Abscísico/metabolismo , Bryopsida/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Transducción de Señal , Secuencias de Aminoácidos , Bryopsida/genética , Mutación , Fosforilación , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Proteínas Serina-Treonina Quinasas , Proteómica
9.
Adv Exp Med Biol ; 1081: 167-187, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30288710

RESUMEN

Bryophytes are small land plants that have many morphological and physiological features different from vascular plants. With distinct water relations of bryophytes, many bryophyte species exhibit high degrees of tolerance to freezing and desiccation. The tolerance is sustained by the constitutive repair mechanism and the inducible mechanism regulated by environmental signals that provoke specific responses within the cells. Bryophyte cells sense changes in environmental conditions such as decreases in osmotic potential and temperature and that some responses are likely to be mediated by the stress hormone, abscisic acid. Due to their simple structures and high degrees of dehydration tolerance, bryophytes are useful for physiological studies on abiotic stress response and also for analysis of signal sensing and transduction of environmental signals. Furthermore, the basal phylogenetic position of bryophytes in land plants provides many insights into the evolutionary events for conquest of land by the ancestors of plants and subsequent diversification of species as well as their survival strategies in the terrestrial environment.


Asunto(s)
Aclimatación , Briófitas/fisiología , Respuesta al Choque por Frío , Congelación , Ácido Abscísico/metabolismo , Briófitas/genética , Briófitas/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Estado de Hidratación del Organismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Agua/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(46): E6388-96, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26540727

RESUMEN

Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated "ARK" (for "ABA and abiotic stress-responsive Raf-like kinase") plays an essential role in the activation of SnRK2. ARK encoded by a single gene in P. patens belongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms.


Asunto(s)
Bryopsida , Sistema de Señalización de MAP Quinasas/fisiología , Presión Osmótica/fisiología , Proteínas de Plantas , Quinasas raf , Secuencia de Aminoácidos , Bryopsida/enzimología , Bryopsida/genética , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo
12.
Physiol Plant ; 156(4): 407-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26456006

RESUMEN

Abscisic acid (ABA) is a phytohormone widely distributed among members of the land plant lineage (Embryophyta), regulating dormancy, stomata closure and tolerance to environmental stresses. In angiosperms (Magnoliophyta), ABA-induced gene expression is mediated by promoter elements such as the G-box-like ACGT-core motifs recognized by bZIP transcription factors. In contrast, the mode of regulation by ABA of gene expression in liverworts (Marchantiophyta), representing one of the earliest diverging land plant groups, has not been elucidated. In this study, we used promoters of the liverwort Marchantia polymorpha dehydrin and the wheat Em genes fused to the ß-glucuronidase (GUS) reporter gene to investigate ABA-induced gene expression in liverworts. Transient assays of cultured cells of Marchantia indicated that ACGT-core motifs proximal to the transcription initiation site play a role in the ABA-induced gene expression. The RY sequence recognized by B3 transcriptional regulators was also shown to be responsible for the ABA-induced gene expression. In transgenic Marchantia plants, ABA treatment elicited an increase in GUS expression in young gemmalings, which was abolished by simultaneous disruption of the ACGT-core and RY elements. ABA-induced GUS expression was less obvious in mature thalli than in young gemmalings, associated with reductions in sensitivity to exogenous ABA during gametophyte growth. In contrast, lunularic acid, which had been suggested to function as an ABA-like substance, had no effect on GUS expression. The results demonstrate the presence of ABA-specific response mechanisms mediated by conserved cis-regulatory elements in liverworts, implying that the mechanisms had been acquired in the common ancestors of embryophytes.


Asunto(s)
Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Marchantia/genética , Reguladores del Crecimiento de las Plantas/farmacología , Evolución Molecular , Expresión Génica , Genes Reporteros , Células Germinativas de las Plantas , Marchantia/efectos de los fármacos , Marchantia/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Salicilatos/farmacología , Estilbenos/farmacología , Estrés Fisiológico , Triticum/genética
13.
New Phytol ; 206(1): 209-219, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25545104

RESUMEN

Plants acclimate to environmental stress signals such as cold, drought and hypersalinity, and provoke internal protective mechanisms. Abscisic acid (ABA), a carotenoid-derived phytohormone, which increases in response to the stress signals above, has been suggested to play a key role in the acclimation process in angiosperms, but the role of ABA in basal land plants such as mosses, including its biosynthetic pathways, has not been clarified. Targeted gene disruption of PpABA1, encoding zeaxanthin epoxidase in the moss Physcomitrella patens was conducted to determine the role of endogenous ABA in acclimation processes in mosses. The generated ppaba1 plants were found to accumulate only a small amount of endogenous ABA. The ppaba1 plants showed reduced osmotic acclimation capacity in correlation with reduced dehydration tolerance and accumulation of late embryogenesis abundant proteins. By contrast, cold-induced freezing tolerance was less affected in ppaba1, indicating that endogenous ABA does not play a major role in the regulation of cold acclimation in the moss. Our results suggest that the mechanisms for osmotic acclimation mediated by carotenoid-derived synthesis of ABA are conserved in embryophytes and that acquisition of the mechanisms played a crucial role in terrestrial adaptation and colonization by land plant ancestors.


Asunto(s)
Ácido Abscísico/metabolismo , Adaptación Fisiológica , Bryopsida/fisiología , Carotenoides/metabolismo , Oxidorreductasas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Bryopsida/genética , Congelación , Regulación de la Expresión Génica de las Plantas , Ósmosis , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico
14.
Biochem Biophys Res Commun ; 454(4): 588-93, 2014 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-25450698

RESUMEN

Late embryogenesis abundant (LEA) proteins, which accumulate to high levels in seeds during late maturation, are associated with desiccation tolerance. A member of the LEA protein family was found in cultured cells of the liverwort Marchantia polymorpha; preculture treatment of these cells with 0.5M sucrose medium led to their acquisition of desiccation tolerance. We characterized this preculture-induced LEA protein, designated as MpLEA1. MpLEA1 is predominantly hydrophilic with a few hydrophobic residues that may represent its putative signal peptide. The protein also contains a putative endoplasmic reticulum (ER) retention sequence, HEEL, at the C-terminus. Microscopic observations indicated that GFP-fused MpLEA1 was mainly localized in the ER. The recombinant protein MpLEA1 is intrinsically disordered in solution. On drying, MpLEA1 shifted predominantly toward α-helices from random coils. Such changes in conformation are a typical feature of the group 3 LEA proteins. Recombinant MpLEA1 prevented the aggregation of α-casein during desiccation-rehydration events, suggesting that MpLEA1 exerts anti-aggregation activity against desiccation-sensitive proteins by functioning as a "molecular shield". Moreover, the anti-aggregation activity of MpLEA1 was ten times greater than that of BSA or insect LEA proteins, which are known to prevent aggregation on drying. Here, we show that an ER-localized LEA protein, MpLEA1, possesses biochemical and structural features specific to group 3 LEA proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Marchantia/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Semillas/citología , Semillas/metabolismo
15.
Front Plant Sci ; 13: 952820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968153

RESUMEN

Phytohormone abscisic acid (ABA) plays a key role in stomata closure, osmostress acclimation, and vegetative and embryonic dormancy. Group B3 Raf protein kinases (B3-Rafs) serve as positive regulators of ABA and osmostress signaling in the moss Physcomitrium patens and the angiosperm Arabidopsis thaliana. While P. patens has a single B3-Raf called ARK, specific members of B3-Rafs among six paralogs regulate ABA and osmostress signaling in A. thaliana, indicating functional diversification of B3-Rafs in angiosperms. However, we found that the liverwort Marchantia polymorpha, belonging to another class of bryophytes, has three paralogs of B3-Rafs, MpARK1, MpARK2, and MpARK3, with structural variations in the regulatory domains of the polypeptides. By reporter assays of the P. patens ark line and analysis of genome-editing lines of M. polymorpha, we found that these B3-Rafs are functionally redundant in ABA response, with respect to inhibition of growth, tolerance to desiccation and expression of stress-associated transcripts, the majority of which are under the control of the PYR/PYL/RCAR-like receptor MpPYL1. Interestingly, gemmae in gemma cups were germinating only in mutant lines associated with MpARK1, indicating that dormancy in the gametophyte is controlled by a specific B3-Raf paralog. These results indicated not only conservation of the role of B3-Rafs in ABA and osmostress response in liverworts but also functional diversification of B3-Rafs, which is likely to have occurred in the early stages of land plant evolution.

16.
Curr Biol ; 32(1): 164-175.e8, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34798048

RESUMEN

To survive fluctuating water availability on land, terrestrial plants must be able to sense water stresses, such as drought and flooding. The plant hormone abscisic acid (ABA) and plant-specific SNF1-related protein kinase 2 (SnRK2) play key roles in plant osmostress responses. We recently reported that, in the moss Physcomitrium patens, ABA and osmostress-dependent SnRK2 activation requires phosphorylation by an upstream RAF-like kinase (ARK). This RAF/SnRK2 module is an evolutionarily conserved mechanism of osmostress signaling in land plants. Surprisingly, ARK is also an ortholog of Arabidopsis CONSTITUTIVE RESPONSE 1 (CTR1), which negatively regulates the ethylene-mediated submergence response of P. patens, indicating a nexus for cross-talk between the two signaling pathways that regulate responses to water availability. However, the mechanism through which the ARK/SnRK2 module is activated in response to water stress remains to be elucidated. Here, we show that a group of ethylene-receptor-related sensor histidine kinases (ETR-HKs) is essential for ABA and osmostress responses in P. patens. The intracellular kinase domain of an ETR-HK from P. patens physically interacts with ARK at the endoplasmic reticulum in planta. Moreover, HK disruptants lack ABA-dependent autophosphorylation of the critical serine residue in the activation loop of ARK, leading to loss of SnRK2 activation in response to ABA and osmostress. Collectively with the notion that ETR-HKs participate in submergence responses, our present data suggest that the HK/ARK module functions as an integration unit for environmental water availability to elicit optimized water stress responses in the moss P. patens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Histidina/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo
17.
Plant Physiol ; 152(3): 1529-43, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20097789

RESUMEN

Abscisic acid (ABA) is postulated to be a ubiquitous hormone that plays a central role in seed development and responses to environmental stresses of vascular plants. However, in liverworts (Marchantiophyta), which represent the oldest extant lineage of land plants, the role of ABA has been least emphasized; thus, very little information is available on the molecular mechanisms underlying ABA responses. In this study, we isolated and characterized MpABI1, an ortholog of ABSCISIC ACID INSENSITIVE1 (ABI1), from the liverwort Marchantia polymorpha. The MpABI1 cDNA encoded a 568-amino acid protein consisting of the carboxy-terminal protein phosphatase 2C (PP2C) domain and a novel amino-terminal regulatory domain. The MpABI1 transcript was detected in the gametophyte, and its expression level was increased by exogenous ABA treatment in the gemma, whose growth was strongly inhibited by ABA. Experiments using green fluorescent protein fusion constructs indicated that MpABI1 was mainly localized in the nucleus and that its nuclear localization was directed by the amino-terminal domain. Transient overexpression of MpABI1 in M. polymorpha and Physcomitrella patens cells resulted in suppression of ABA-induced expression of the wheat Em promoter fused to the beta -glucuronidase gene. Transgenic P. patens expressing MpABI1 and its mutant construct, MpABI1-d2, lacking the amino-terminal domain, had reduced freezing and osmotic stress tolerance, and associated with reduced accumulation of ABA-induced late embryogenesis abundant-like boiling-soluble proteins. Furthermore, ABA-induced morphological changes leading to brood cells were not prominent in these transgenic plants. These results suggest that MpABI1 is a negative regulator of ABA signaling, providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in liverworts.


Asunto(s)
Ácido Abscísico/metabolismo , Marchantia/enzimología , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/metabolismo , Marchantia/genética , Fosfoproteínas Fosfatasas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteína Fosfatasa 2C , ARN de Planta/genética
18.
J Plant Res ; 124(4): 437-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21416316

RESUMEN

Abscisic acid (ABA) is not a plant-specific compound but one found in organisms across kingdoms from bacteria to animals, suggesting that it is a ubiquitous and versatile substance that can modulate physiological functions of various organisms. Recent studies have shown that plants developed an elegant system for ABA sensing and early signal transduction mechanisms to modulate responses to environmental stresses for survival in terrestrial conditions. ABA-induced increase in stress tolerance has been reported not only in vascular plants but also in non-vascular bryophytes. Since bryophytes are the key group of organisms in the context of plant evolution, clarification of their ABA-dependent processes is important for understanding evolutionary adaptation of land plants. Molecular approaches using Physcomitrella patens have revealed that ABA plays a role in dehydration stress tolerance in mosses, which comprise a major group of bryophytes. Furthermore, we recently reported that signaling machinery for ABA responses is also conserved in liverworts, representing the most basal members of extant land plant lineage. Conservation of the mechanism for ABA sensing and responses in angiosperms and basal land plants suggests that acquisition of this mechanism for stress tolerance in vegetative tissues was one of the critical evolutionary events for adaptation to the land. This review describes the role of ABA in basal land plants as well as non-land plant organisms and further elaborates on recent progress in molecular studies of model bryophytes by comparative and functional genomic approaches.


Asunto(s)
Ácido Abscísico/fisiología , Briófitas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Factores de Transcripción/metabolismo , Apicomplexa/metabolismo , Briófitas/genética , Briófitas/crecimiento & desarrollo , Calcio/metabolismo , Chlorophyta/metabolismo , Hongos/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/genética
19.
Tree Physiol ; 30(4): 502-13, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20100700

RESUMEN

With seasonal changes, several proteins accumulate in the endoplasmic reticulum (ER)-enriched fraction in the bark of mulberry tree (Morus bombycis Koidz.). Results of partial amino acid sequence analysis in our previous study suggested that one of these proteins is the ER-localized small heat shock protein (sHSP), designated 20-kD winter-accumulating protein (WAP20). In the present study, molecular and biochemical properties of WAP20 were investigated in detail. The deduced amino acid sequence of the cDNA has the predicted signal sequence to the ER, retention signal to the ER and two consensus regions conserved in sHSPs. Recombinant WAP20 expressed in Escherichia coli also showed typical biochemical features of sHSPs, including the formation of a high-molecular-mass complex between 200 and 300 kD under native conditions, promotion of the renaturation of chemically denaturated citrate synthase and prevention of heat stress-induced aggregation of the enzyme. Transcript levels of WAP20 in the bark tissue were seasonally changed, showing high expression levels from mid-October to mid-December, and the transcript levels were additionally increased and decreased by cold treatment and warm treatment, respectively. WAP20 transcripts were detected abundantly in bark tissue rather than xylem and winter bud tissues during seasonal cold acclimation. The bark tissue specificity of WAP20 accumulation was also observed by exogenous application of phytohormone abscisic acid (ABA) in de-acclimated twigs, whereas WAP20 transcripts were increased in all of these tissues by heat shock treatment at 37 degrees C in summer twigs. The results suggest that ABA may be involved in the expression of the WAP20 gene in bark tissue of the mulberry tree during seasonal cold acclimation.


Asunto(s)
Ácido Abscísico/metabolismo , Aclimatación , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Morus/metabolismo , Secuencia de Aminoácidos , Frío , Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/genética , Calor , Datos de Secuencia Molecular , Morus/genética , Corteza de la Planta/metabolismo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA