Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 46(7): e2400054, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713169

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, primarily leading to the degeneration of motor neurons. The traditional focus on motor neuron-centric mechanisms has recently shifted towards understanding the contribution of non-neuronal cells, such as microglia, in ALS pathophysiology. Advances in induced pluripotent stem cell (iPSC) technology have enabled the generation of iPSC-derived microglia monocultures and co-cultures to investigate their role in ALS pathogenesis. Here, we briefly review the insights gained from these studies into the role of microglia in ALS. While iPSC-derived microglia monocultures have revealed intrinsic cellular dysfunction due to ALS-associated mutations, microglia-motor neuron co-culture studies have demonstrated neurotoxic effects of mutant microglia on motor neurons. Based on these findings, we briefly discuss currently unresolved questions and how they could be addressed in future studies. iPSC models hold promise for uncovering disease-relevant pathways in ALS and identifying potential therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Microglía , Neuronas Motoras , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Técnicas de Cocultivo , Animales
2.
Hum Mol Genet ; 32(2): 319-332, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994036

RESUMEN

Responding effectively to external stress is crucial for neurons. Defective stress granule dynamics has been hypothesized as one of the pathways that renders motor neurons in amyotrophic lateral sclerosis (ALS) more prone to early death. Specifically, it is thought that stress granules seed the cytoplasmic TDP-43 inclusions that are observed in the neurons of most ALS patients, as well as ~50% of all frontotemporal dementia (FTD) patients. In this study, we tested this hypothesis in an intact mammalian nervous system. We established an in vivo heat stress paradigm in mice that effectively triggers the eIF2α pathway and the formation of stress granules in the CNS. In non-transgenic mice, we report an age-dependent decline in the formation of heat-induced stress granules, with 18-month-old animals showing a significant impairment. Furthermore, although neuronal stress granules were robustly observed in non-transgenic mice and SOD1G93A mice, they were largely absent in age-matched TDP-43M337V animals. The observed defect in stress granule formation in TDP-43M337V mice correlated with deficits in expression of key protein components typically required for phase separation. Lastly, while TDP-43 was not localized to stress granules, we observed complete nuclear depletion of TDP-43 in a subset of neurons, with the highest proportion being in the TDP-43M337V mice. Overall, our results indicate that mutant TDP-43 expression is associated with defective stress granule assembly and increased TDP-43 nuclear depletion in the mammalian nervous system, which could be relevant to ALS/FTD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/patología , Gránulos de Estrés , Neuronas Motoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mamíferos/metabolismo
3.
J Neurochem ; 168(2): 115-127, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38087504

RESUMEN

While unbiased proteomics of human cerebrospinal fluid (CSF) has been used successfully to identify biomarkers of amyotrophic lateral sclerosis (ALS), high-abundance proteins mask the presence of lower abundance proteins that may have diagnostic and prognostic value. However, developments in mass spectrometry (MS) proteomic data acquisition methods offer improved protein depth. In this study, MS with library-free data-independent acquisition (DIA) was used to compare the CSF proteome of people with ALS (n = 40), healthy (n = 15) and disease (n = 8) controls. Quantified protein groups were subsequently correlated with clinical variables. Univariate analysis identified 7 proteins, all significantly upregulated in ALS versus healthy controls, and 9 with altered abundance in ALS versus disease controls (FDR < 0.1). Elevated chitotriosidase-1 (CHIT1) was common to both comparisons and was proportional to ALS disability progression rate (Pearson r = 0.41, FDR-adjusted p = 0.035) but not overall survival. Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1; upregulated in ALS versus healthy controls) was proportional to disability progression rate (Pearson r = 0.53, FDR-adjusted p = 0.003) and survival (Kaplan Meier log-rank p = 0.013) but not independently in multivariate proportional hazards models. Weighted correlation network analysis was used to identify functionally relevant modules of proteins. One module, enriched for inflammatory functions, was associated with age at symptom onset (Pearson r = 0.58, FDR-adjusted p = 0.005) and survival (Hazard Ratio = 1.78, FDR = 0.065), and a second module, enriched for endoplasmic reticulum proteins, was negatively correlated with disability progression rate (r = -0.42, FDR-adjusted p = 0.109). DIA acquisition methodology therefore strengthened the biomarker candidacy of CHIT1 and UCHL1 in ALS, while additionally highlighted inflammatory and endoplasmic reticulum proteins as novel sources of prognostic biomarkers.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Proteómica/métodos , Biomarcadores/líquido cefalorraquídeo , Pronóstico , Espectrometría de Masas
4.
Artículo en Inglés | MEDLINE | ID: mdl-38548323

RESUMEN

BACKGROUND: Venous thromboembolism (VTE) can occur in amyotrophic lateral sclerosis (ALS) and pulmonary embolism causes death in a minority of cases. The benefits of preventing VTE must be weighed against the risks. An accurate estimate of the incidence of VTE in ALS is crucial to assessing this balance. METHODS: This retrospective record-linkage cohort study derived data from the Hospital Episode Statistics database, covering admissions to England's hospitals from 1 April 2003 to 31 December 2019 and included 21 163 patients with ALS and 17 425 337 controls. Follow-up began at index admission and ended at VTE admission, death or 2 years (whichever came sooner). Adjusted HRs (aHRs) for VTE were calculated, controlling for confounders. RESULTS: The incidence of VTE in the ALS cohort was 18.8/1000 person-years. The relative risk of VTE in ALS was significantly greater than in controls (aHR 2.7, 95% CI 2.4 to 3.0). The relative risk of VTE in patients with ALS under 65 years was five times higher than controls (aHR 5.34, 95% CI 4.6 to 6.2), and higher than that of patients over 65 years compared with controls (aHR 1.86, 95% CI 1.62 to 2.12). CONCLUSIONS: Patients with ALS are at a higher risk of developing VTE, but this is similar in magnitude to that reported in other chronic neurological conditions associated with immobility, such as multiple sclerosis, which do not routinely receive VTE prophylaxis. Those with ALS below the median age of symptom onset have a notably higher relative risk. A reappraisal of the case for routine antithrombotic therapy in those diagnosed with ALS now requires a randomised controlled trial.

5.
Eur J Neurol ; 30(8): 2240-2249, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37159497

RESUMEN

BACKGROUND: Next-generation sequencing has enhanced our understanding of amyotrophic lateral sclerosis (ALS) and its genetic epidemiology. Outside the research setting, testing is often restricted to those who report a family history. The aim of this study was to explore the added benefit of offering routine genetic testing to all patients in a regional ALS centre. METHODS: C9ORF72 expansion testing and exome sequencing was offered to consecutive patients (150 with ALS and 12 with primary lateral sclerosis [PLS]) attending the Oxford Motor Neuron Disease Clinic within a defined time period. RESULTS: A total of 17 (11.3%) highly penetrant pathogenic variants in C9ORF72, SOD1, TARDBP, FUS and TBK1 were detected, of which 10 were also found through standard clinical genetic testing pathways. The systematic approach resulted in five additional diagnoses of a C9ORF72 expansion (number needed to test [NNT] = 28), and two further missense variants in TARDBP and SOD1 (NNT = 69). Additionally, 3 patients were found to carry pathogenic risk variants in NEK1, and 13 patients harboured common missense variants in CFAP410 and KIF5A, also associated with an increased risk of ALS. We report two novel non-coding loss-of-function splice variants in TBK1 and OPTN. No relevant variants were found in the PLS patients. Patients were offered double-blinded participation, but >80% requested disclosure of the results. CONCLUSIONS: This study provides evidence that expanding genetic testing to all patients with a clinical diagnosis of ALS enhances the potential for recruitment to clinical trials, but will have direct resource implications for genetic counselling.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa-1/genética , Proteína C9orf72/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Cinesinas/genética
6.
Brain ; 145(12): 4440-4447, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36162820

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative syndrome. In up to 20% of cases, a family history is observed. Although Mendelian disease gene variants are found in apparently sporadic ALS, genetic testing is usually restricted to those with a family history or younger patients with sporadic disease. With the advent of therapies targeting genetic ALS, it is important that everyone treatable is identified. We therefore sought to determine the probability of a clinically actionable ALS genetic test result by age of onset, globally, but using the UK as an exemplar. Blood-derived DNA was sequenced for ALS genes, and the probability of a clinically actionable genetic test result estimated. For a UK subset, age- and sex-specific population incidence rates were used to determine the number of such results missed by restricting testing by age of onset according to UK's National Genomic Test Directory criteria. There were 6274 people with sporadic ALS, 1551 from the UK. The proportion with a clinically actionable genetic test result ranged between 0.21 [95% confidence interval (CI) 0.18-0.25] in the youngest age group to 0.15 (95% CI 0.13-0.17) in the oldest age group for a full gene panel. For the UK, the equivalent proportions were 0.23 (95% CI 0.13-0.33) in the youngest age group to 0.17 (95% CI 0.13-0.21) in the oldest age group. By limiting testing in those without a family history to people with onset below 40 years, 115 of 117 (98% of all, 95% CI 96%-101%) clinically actionable test results were missed. There is a significant probability of a clinically actionable genetic test result in people with apparently sporadic ALS at all ages. Although some countries limit testing by age, doing so results in a significant number of missed pathogenic test results. Age of onset and family history should not be a barrier to genetic testing in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Masculino , Femenino , Humanos , Esclerosis Amiotrófica Lateral/genética , Pruebas Genéticas , Incidencia
7.
Cell ; 133(4): 572-4, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485864

RESUMEN

Spinal muscular atrophy (SMA) is caused by a drastic reduction in the ubiquitously expressed SMN protein, which is critical for the correct assembly of the snRNP complexes required for RNA splicing. However, it is unclear why loss of SMN and altered snRNP assembly only seem to affect motor neurons. Reporting in this issue, Zhang et al. (2008) challenge prior assumptions about the housekeeping function of SMN and demonstrate that loss of SMN leads to highly tissue-specific effects on splicing.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Animales , Humanos , Ratones , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN
8.
Neuroimage ; 251: 118968, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35143975

RESUMEN

The neurodegenerative disorder amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of upper and lower motor neurons, with pathological involvement of cerebral motor and extra-motor areas in a clinicopathological spectrum with frontotemporal dementia (FTD). A key unresolved issue is how the non-random distribution of pathology in ALS reflects differential network vulnerability, including molecular factors such as regional gene expression, or preferential spread of pathology via anatomical connections. A system of histopathological staging of ALS based on the regional burden of TDP-43 pathology observed in postmortem brains has been supported to some extent by analysis of distribution of in vivo structural MRI changes. In this paper, computational modeling using a Network Diffusion Model (NDM) was used to investigate whether a process of focal pathological 'seeding' followed by structural network-based spread recapitulated postmortem histopathological staging and, secondly, whether this had any correlation to the pattern of expression of a panel of genes implicated in ALS across the healthy brain. Regionally parcellated T1-weighted MRI data from ALS patients (baseline n=79) was studied in relation to a healthy control structural connectome and a database of associated regional cerebral gene expression. The NDM provided strong support for a structural network-based basis for regional pathological spread in ALS, but no simple relationship to the spatial distribution of ALS-related genes in the healthy brain. Interestingly, OPTN gene was identified as a significant but a weaker non-NDM contributor within the network-gene interaction model (LASSO). Intriguingly, the critical seed regions for spread within the model were not within the primary motor cortex but basal ganglia, thalamus and insula, where NDM recapitulated aspects of the postmortem histopathological staging system. Within the ALS-FTD clinicopathological spectrum, non-primary motor structures may be among the earliest sites of cerebral pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Conectoma , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Demencia Frontotemporal/patología , Humanos , Neuronas Motoras
9.
Hum Mol Genet ; 29(13): 2200-2217, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32504093

RESUMEN

The G4C2 hexanucleotide repeat expansion (HRE) in C9orf72 is the commonest cause of familial amyotrophic lateral sclerosis (ALS). A number of different methods have been used to generate isogenic control lines using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and non-homologous end-joining by deleting the repeat region, with the risk of creating indels and genomic instability. In this study, we demonstrate complete correction of an induced pluripotent stem cell (iPSC) line derived from a C9orf72-HRE positive ALS/frontotemporal dementia patient using CRISPR/Cas9 genome editing and homology-directed repair (HDR), resulting in replacement of the excised region with a donor template carrying the wild-type repeat size to maintain the genetic architecture of the locus. The isogenic correction of the C9orf72 HRE restored normal gene expression and methylation at the C9orf72 locus, reduced intron retention in the edited lines and abolished pathological phenotypes associated with the C9orf72 HRE expansion in iPSC-derived motor neurons (iPSMNs). RNA sequencing of the mutant line identified 2220 differentially expressed genes compared with its isogenic control. Enrichment analysis demonstrated an over-representation of ALS relevant pathways, including calcium ion dependent exocytosis, synaptic transport and the Kyoto Encyclopedia of Genes and Genomes ALS pathway, as well as new targets of potential relevance to ALS pathophysiology. Complete correction of the C9orf72 HRE in iPSMNs by CRISPR/Cas9-mediated HDR provides an ideal model to study the earliest effects of the hexanucleotide expansion on cellular homeostasis and the key pathways implicated in ALS pathophysiology.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/patología , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Expansión de las Repeticiones de ADN/genética , Femenino , Edición Génica , Humanos , Masculino , Neuronas Motoras/patología , Fenotipo , Reparación del ADN por Recombinación/genética
10.
J Neurol Neurosurg Psychiatry ; 93(1): 75-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518331

RESUMEN

BACKGROUND: Premorbid body mass index, physical activity, diabetes and cardiovascular disease have been associated with an altered risk of developing amyotrophic lateral sclerosis (ALS). There is evidence of shared genetic risk between ALS and lipid metabolism. A very large prospective longitudinal population cohort permits the study of a range of metabolic parameters and the risk of subsequent diagnosis of ALS. METHODS: The risk of subsequent ALS diagnosis in those enrolled prospectively to the UK Biobank (n=502 409) was examined in relation to baseline levels of blood high and low density lipoprotein (HDL, LDL), total cholesterol, total cholesterol:HDL ratio, apolipoproteins A1 and B (apoA1, apoB), triglycerides, glycated haemoglobin A1c (HbA1c) and creatinine, plus self-reported exercise and body mass index. RESULTS: Controlling for age and sex, higher HDL (HR 0.84, 95% CI 0.73 to 0.96, p=0.010) and apoA1 (HR 0.83, 95% CI 0.72 to 0.94, p=0.005) were associated with a reduced risk of ALS. Higher total cholesterol:HDL was associated with an increased risk of ALS (HR 1.17, 95% CI 1.05 to 1.31, p=0.006). In models incorporating multiple metabolic markers, higher LDL or apoB was associated with an increased risk of ALS, in addition to a lower risk with higher HDL or apoA. Coronary artery disease, cerebrovascular disease and increasing age were also associated with an increased risk of ALS. CONCLUSIONS: The association of HDL, apoA1 and LDL levels with risk of ALS contributes to an increasing body of evidence that the premorbid metabolic landscape may play a role in pathogenesis. Understanding the molecular basis for these changes will inform presymptomatic biomarker development and therapeutic targeting.


Asunto(s)
Esclerosis Amiotrófica Lateral/epidemiología , Apolipoproteína A-I/sangre , Lipoproteínas HDL/sangre , Adulto , Anciano , Esclerosis Amiotrófica Lateral/sangre , Apolipoproteína B-100 , Apolipoproteínas B/sangre , Biomarcadores/sangre , Índice de Masa Corporal , Enfermedades Cardiovasculares/epidemiología , Estudios de Casos y Controles , HDL-Colesterol/sangre , Estudios de Cohortes , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Conducta de Reducción del Riesgo , Triglicéridos/sangre
11.
Pract Neurol ; 22(6): 486-490, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35907635

RESUMEN

Pathological laughter and crying is a disabling symptom complex associated with damage to various central nervous system pathways that control the reflex motor component of emotional expression. Many underlying conditions-including neurodegenerative diseases, CNS inflammation, vascular lesions and traumatic brain injury-can be associated with disinhibition of emotional reflex control. This suggests a disruption of anatomical and functional networks, rather than any specific unifying pathological process. There is a wide differential diagnosis, including depression, dementia and other forms of behavioural disturbance. Diagnostic criteria and rating scales can help with clinical assessments and facilitate clinical trials. There is now good-quality evidence for a combination of dextromethorphan and quinidine, with weaker evidence for tricyclic and selective serotonin reuptake inhibitor antidepressants. Pathological laughter and crying is disabling and underdiagnosed but potentially treatable, and its wider recognition is important.


Asunto(s)
Risa , Enfermedades del Sistema Nervioso , Humanos , Risa/psicología , Llanto/psicología , Quinidina/uso terapéutico , Enfermedades del Sistema Nervioso/terapia , Enfermedades del Sistema Nervioso/tratamiento farmacológico
12.
Pract Neurol ; 22(2): 107-116, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35027459

RESUMEN

A minority (10%-15%) of cases of amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease (MND), are currently attributable to pathological variants in a single identifiable gene. With the emergence of new therapies targeting specific genetic subtypes of ALS, there is an increasing role for routine genetic testing for all those with a definite diagnosis. However, potential harm to both affected individuals and particularly to asymptomatic relatives can arise from the indiscriminate use of genetic screening, not least because of uncertainties around incomplete penetrance and variants of unknown significance. The most common hereditary cause of ALS, an intronic hexanucleotide repeat expansion in C9ORF72, may be associated with frontotemporal dementia independently within the same pedigree. The boundary of what constitutes a possible family history of MND has therefore extended to include dementia and associated psychiatric presentations. Notwithstanding the important role of clinical genetics specialists, all neurologists need a basic understanding of the current place of genetic testing in MND, which holds lessons for other neurological disorders.


Asunto(s)
Expansión de las Repeticiones de ADN , Demencia Frontotemporal , Proteína C9orf72/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Pruebas Genéticas , Humanos , Proteínas/genética
13.
Hum Mol Genet ; 28(21): 3584-3599, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642482

RESUMEN

A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/prevención & control , Animales , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mitocondriales/genética , Desnervación Muscular , Músculos/inervación , Mutación Missense , Unión Neuromuscular/metabolismo , Transporte de Proteínas
14.
Neurobiol Dis ; 144: 105050, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32800996

RESUMEN

TDP-43 pathology is a key feature of amyotrophic lateral sclerosis (ALS), but the mechanisms linking TDP-43 to altered cellular function and neurodegeneration remain unclear. We have recently described a mouse model in which human wild-type or mutant TDP-43 are expressed at low levels and where altered stress granule formation is a robust phenotype of TDP-43M337V/- expressing cells. In the present study we use this model to investigate the functional connectivity of human TDP-43 in primary motor neurons under resting conditions and in response to oxidative stress. The interactome of human TDP-43WT or TDP-43M337V was compared by mass spectrometry, and gene ontology enrichment analysis identified pathways dysregulated by the M337V mutation. We found that under normal conditions the interactome of human TDP-43WT was enriched for proteins involved in transcription, translation and poly(A)-RNA binding. In response to oxidative stress, TDP-43WT recruits proteins of the endoplasmic reticulum and endosomal-extracellular transport pathways, interactions which are reduced in the presence of the M337V mutation. Specifically, TDP-43M337V impaired protein-protein interactions involved in stress granule formation including reduced binding to the translation initiation factors Poly(A)-binding protein and Eif4a1 and the endoplasmic reticulum chaperone Grp78. The M337V mutation also affected interactions involved in endosomal-extracellular transport and this this was associated with reduced extracellular vesicle secretion in primary motor neurons from TDP-43M337V/- mice and in human iPSCs-derived motor neurons. Taken together, our analysis highlights a TDP-43 interaction network in motor neurons and demonstrates that an ALS associated mutation may alter the interactome to drive aberrant pathways involved in the pathogenesis of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Redes Reguladoras de Genes , Neuronas Motoras/metabolismo , Estrés Oxidativo , Mapas de Interacción de Proteínas , Esclerosis Amiotrófica Lateral/genética , Animales , Células Cultivadas , Células Madre Embrionarias , Chaperón BiP del Retículo Endoplásmico , Humanos , Ratones , Ratones Transgénicos , Mutación , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética/genética
15.
Genome Res ; 27(1): 165-173, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003435

RESUMEN

Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies.


Asunto(s)
Encéfalo/patología , Variaciones en el Número de Copia de ADN/genética , Secuenciación del Exoma/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Investigación Biomédica , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , ADN/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Genotipo , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
16.
Clin Proteomics ; 17: 31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821252

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) released by neurons and glia reach the cerebrospinal fluid (CSF). Studying the proteome of CSF-derived EVs offers a novel perspective on the key intracellular processes associated with the pathogenesis of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and a potential source from which to develop biomarkers. METHODS: CSF EVs were extracted using ultrafiltration liquid chromatography from ALS patients and controls. EV size distribution and concentration was measured using nanoparticle tracking analysis and liquid chromatography-tandem mass spectrometry proteomic analysis performed. RESULTS: CSF EV concentration and size distribution did not differ between ALS and control groups, nor between a sub-group of ALS patients with or without an associated hexanucleotide repeat expansion (HRE) in C9orf72. Univariate proteomic analysis identified downregulation of the pentameric proteasome-like protein Bleomycin hydrolase in ALS patients, whilst Gene Ontology enrichment analysis demonstrated downregulation of proteasome core complex proteins (8/8 proteins, normalized enrichment ratio -1.77, FDR-adjusted p = 0.057) in the ALS group. The sub-group of ALS patients associated with the C9orf72 HRE showed upregulation in Ubiquitin-like modifying-activating protein 1 (UBA1) compared to non-C9orf72 cases. CONCLUSIONS: Proteomic analysis of CSF EVs in ALS detects intracellular alterations in protein homeostatic mechanisms, previously only identified in pathological tissues. This supports the wider use of CSF EVs as a source of novel biomarkers reflecting key and potentially druggable pathological intracellular pathway alterations in ALS.

17.
Brain ; 142(3): 586-605, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698736

RESUMEN

As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow disease progression. Possible approaches include increasing or rerouting catabolism of alternative fuel sources to supplement the glycolytic and mitochondrial pathways such as glycogen, ketone bodies and nucleosides. To analyse the basis of the catabolic defect in amyotrophic lateral sclerosis we used a novel phenotypic metabolic array. We profiled fibroblasts and induced neuronal progenitor-derived human induced astrocytes from C9orf72 amyotrophic lateral sclerosis patients compared to normal controls, measuring the rates of production of reduced nicotinamide adenine dinucleotides from 91 potential energy substrates. This approach shows for the first time that C9orf72 human induced astrocytes and fibroblasts have an adenosine to inosine deamination defect caused by reduction of adenosine deaminase, which is also observed in induced astrocytes from sporadic patients. Patient-derived induced astrocyte lines were more susceptible to adenosine-induced toxicity, which could be mimicked by inhibiting adenosine deaminase in control lines. Furthermore, adenosine deaminase inhibition in control induced astrocytes led to increased motor neuron toxicity in co-cultures, similar to the levels observed with patient derived induced astrocytes. Bypassing metabolically the adenosine deaminase defect by inosine supplementation was beneficial bioenergetically in vitro, increasing glycolytic energy output and leading to an increase in motor neuron survival in co-cultures with induced astrocytes. Inosine supplementation, in combination with modulation of the level of adenosine deaminase may represent a beneficial therapeutic approach to evaluate in patients with amyotrophic lateral sclerosis.


Asunto(s)
Adenosina Desaminasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Adenosina Desaminasa/fisiología , Adulto , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Astrocitos/metabolismo , Proteína C9orf72/metabolismo , Muerte Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Progresión de la Enfermedad , Metabolismo Energético/fisiología , Femenino , Fibroblastos/metabolismo , Humanos , Inosina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(16): E3324-E3333, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28351971

RESUMEN

Charcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, GARS The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible for the underlying afferent nerve pathology, we examined the sensory nervous system of CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in dorsal root ganglia is distorted by Gars mutations, leading to sensory defects in peripheral tissues and correlating with overall disease severity. CMT2D mice display changes in sensory behavior concordant with the afferent imbalance, which is present at birth and nonprogressive, indicating that sensory neuron identity is prenatally perturbed and that a critical developmental insult is key to the afferent pathology. Through in vitro experiments, mutant, but not wild-type, GlyRS was shown to aberrantly interact with the Trk receptors and cause misactivation of Trk signaling, which is essential for sensory neuron differentiation and development. Together, this work suggests that both neurodevelopmental and neurodegenerative mechanisms contribute to CMT2D pathogenesis, and thus has profound implications for the timing of future therapeutic treatments.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/patología , Glicina-ARNt Ligasa/fisiología , Mutación , Receptor trkA/metabolismo , Células Receptoras Sensoriales/patología , Animales , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Receptor trkA/genética , Células Receptoras Sensoriales/metabolismo
19.
Pract Neurol ; 20(4): 262-269, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32217663

RESUMEN

Primary lateral sclerosis (PLS) is a rare neurodegenerative disorder at the upper motor neurone extreme of the spectrum of motor neurone disease. The diagnosis is clinical and based on the characteristic features of slowly progressive spasticity beginning in the lower limbs, or more rarely with spastic dysarthria, typically presenting around 50 years of age. The absence of lower motor neurone involvement is considered to be a defining feature, but confident distinction of PLS from upper motor neurone-predominant forms of amyotrophic lateral sclerosis may be difficult in the first few years. Corticobulbar involvement in PLS is frequently accompanied by emotionality. While there may be dysphagia, gastrostomy is rarely required to maintain nutrition. Cognitive dysfunction is recognised, though dementia is rarely a prominent management issue. PLS is not necessarily life shortening. Specialised multidisciplinary care is recommended. Increasing international research cooperation is required if the aspiration of dedicated therapeutic trials for PLS is to be achieved.


Asunto(s)
Manejo de la Enfermedad , Enfermedad de la Neurona Motora/diagnóstico por imagen , Enfermedad de la Neurona Motora/terapia , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Diagnóstico Diferencial , Humanos , Enfermedad de la Neurona Motora/genética , Neuronas Motoras/patología
20.
Neurobiol Dis ; 121: 148-162, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30290270

RESUMEN

Mutations in the gene encoding the RNA-binding protein TDP-43 cause amyotrophic lateral sclerosis (ALS), clinically and pathologically indistinguishable from the majority of 'sporadic' cases of ALS, establishing altered TDP-43 function and distribution as a primary mechanism of neurodegeneration. Transgenic mouse models in which TDP-43 is overexpressed only partially recapitulate the key cellular pathology of human ALS, but may also lead to non-specific toxicity. To avoid the potentially confounding effects of overexpression, and to maintain regulated spatio-temporal and cell-specific expression, we generated mice in which an 80 kb genomic fragment containing the intact human TDP-43 locus (either TDP-43WT or TDP-43M337V) and its regulatory regions was integrated into the Rosa26 (Gt(ROSA26)Sor) locus in a single copy. At 3 months of age, TDP-43M337V mice are phenotypically normal but by around 6 months develop progressive motor function deficits associated with loss of neuromuscular junction integrity, leading to a reduced lifespan. RNA sequencing shows that widespread mis-splicing is absent prior to the development of a motor phenotype, though differential expression analysis reveals a distinct transcriptional profile in pre-symptomatic TDP-43M337V spinal cords. Despite the presence of clear motor abnormalities, there was no evidence of TDP-43 cytoplasmic aggregation in vivo at any timepoint. In primary embryonic spinal motor neurons and in embryonic stem cell (ESC)-derived motor neurons, mutant TDP-43 undergoes cytoplasmic mislocalisation, and is associated with altered stress granule assembly and dynamics. Overall, this mouse model provides evidence that ALS may arise through acquired TDP-43 toxicity associated with defective stress granule function. The normal phenotype until 6 months of age can facilitate the study of early pathways underlying ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Neuronas Motoras/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Fuerza de la Mano , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Mutación , Unión Neuromuscular/patología , Proteínas de Unión al ARN/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA