Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2406734121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38913897

RESUMEN

The Merovingian period (5th to 8th cc AD) was a time of demographic, socioeconomic, cultural, and political realignment in Western Europe. Here, we report the whole-genome shotgun sequence data of 30 human skeletal remains from a coastal Late Merovingian site of Koksijde (675 to 750 AD), alongside 18 remains from two Early to Late Medieval sites in present-day Flanders, Belgium. We find two distinct ancestries, one shared with Early Medieval England and the Netherlands, while the other, minor component, reflecting likely continental Gaulish ancestry. Kinship analyses identified no large pedigrees characteristic to elite burials revealing instead a high modularity of distant relationships among individuals of the main ancestry group. In contrast, individuals with >90% Gaulish ancestry had no kinship links among sampled individuals. Evidence for population structure and major differences in the extent of Gaulish ancestry in the main group, including in a mother-daughter pair, suggests ongoing admixture in the community at the time of their burial. The isotopic and genetic evidence combined supports a model by which the burials, representing an established coastal nonelite community, had incorporated migrants from inland populations. The main group of burials at Koksijde shows an abundance of >5 cM long shared allelic intervals with the High Medieval site nearby, implying long-term continuity and suggesting that similarly to Britain, the Early Medieval ancestry shifts left a significant and long-lasting impact on the genetic makeup of the Flemish population. We find substantial allele frequency differences between the two ancestry groups in pigmentation and diet-associated variants, including those linked with lactase persistence, likely reflecting ancestry change rather than local adaptation.


Asunto(s)
Linaje , Humanos , Historia Medieval , Bélgica , Entierro/historia , Genética de Población/métodos , Femenino , Masculino , ADN Antiguo/análisis , Inglaterra , Migración Humana , Arqueología , Países Bajos , Genoma Humano
2.
Am J Hum Genet ; 108(9): 1792-1806, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34411538

RESUMEN

The Finnish population is a unique example of a genetic isolate affected by a recent founder event. Previous studies have suggested that the ancestors of Finnic-speaking Finns and Estonians reached the circum-Baltic region by the 1st millennium BC. However, high linguistic similarity points to a more recent split of their languages. To study genetic connectedness between Finns and Estonians directly, we first assessed the efficacy of imputation of low-coverage ancient genomes by sequencing a medieval Estonian genome to high depth (23×) and evaluated the performance of its down-sampled replicas. We find that ancient genomes imputed from >0.1× coverage can be reliably used in principal-component analyses without projection. By searching for long shared allele intervals (LSAIs; similar to identity-by-descent segments) in unphased data for >143,000 present-day Estonians, 99 Finns, and 14 imputed ancient genomes from Estonia, we find unexpectedly high levels of individual connectedness between Estonians and Finns for the last eight centuries in contrast to their clear differentiation by allele frequencies. High levels of sharing of these segments between Estonians and Finns predate the demographic expansion and late settlement process of Finland. One plausible source of this extensive sharing is the 8th-10th centuries AD migration event from North Estonia to Finland that has been proposed to explain uniquely shared linguistic features between the Finnish language and the northern dialect of Estonian and shared Christianity-related loanwords from Slavic. These results suggest that LSAI detection provides a computationally tractable way to detect fine-scale structure in large cohorts.


Asunto(s)
Alelos , ADN Antiguo/análisis , Genoma Humano , Migración Humana/historia , Linaje , Estonia , Femenino , Finlandia , Frecuencia de los Genes , Genealogía y Heráldica , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Humanos , Lenguaje/historia , Masculino
3.
Hum Mol Genet ; 30(22): 2123-2134, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196708

RESUMEN

American populations are one of the most interesting examples of recently admixed groups, where ancestral components from three major continental human groups (Africans, Eurasians and Native Americans) have admixed within the last 15 generations. Recently, several genetic surveys focusing on thousands of individuals shed light on the geography, chronology and relevance of these events. However, even though gene flow could drive adaptive evolution, it is unclear whether and how natural selection acted on the resulting genetic variation in the Americas. In this study, we analysed the patterns of local ancestry of genomic fragments in genome-wide data for ~ 6000 admixed individuals from 10 American countries. In doing so, we identified regions characterized by a divergent ancestry profile (DAP), in which a significant over or under ancestral representation is evident. Our results highlighted a series of genomic regions with DAPs associated with immune system response and relevant medical traits, with the longest DAP region encompassing the human leukocyte antigen locus. Furthermore, we found that DAP regions are enriched in genes linked to cancer-related traits and autoimmune diseases. Then, analysing the biological impact of these regions, we showed that natural selection could have acted preferentially towards variants located in coding and non-coding transcripts and characterized by a high deleteriousness score. Taken together, our analyses suggest that shared patterns of post admixture adaptation occurred at a continental scale in the Americas, affecting more often functional and impactful genomic variants.


Asunto(s)
Genética de Población , Genoma Humano , Genómica , Grupos Raciales/genética , Selección Genética , Américas , Simulación por Computador , Genómica/métodos , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple
4.
Nature ; 538(7624): 238-242, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27654910

RESUMEN

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


Asunto(s)
Genoma Humano/genética , Genómica , Migración Humana/historia , Grupos Raciales/genética , África/etnología , Animales , Asia , Conjuntos de Datos como Asunto , Estonia , Europa (Continente) , Fósiles , Flujo Génico , Genética de Población , Heterocigoto , Historia Antigua , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Dinámica Poblacional
5.
BMC Biol ; 19(1): 220, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610848

RESUMEN

BACKGROUND: Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS: Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS: Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.


Asunto(s)
Mycobacterium leprae , Europa (Continente) , Genoma Bacteriano/genética , Humanos , Lepra/genética , Mycobacterium leprae/genética , Dinámica Poblacional
6.
Nature ; 505(7481): 87-91, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24256729

RESUMEN

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


Asunto(s)
Pueblo Asiatico/genética , Genoma Humano/genética , Indígenas Norteamericanos/etnología , Indígenas Norteamericanos/genética , Filogenia , Población Blanca/genética , Animales , Asia/etnología , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Emigración e Inmigración , Flujo Génico/genética , Genoma Mitocondrial/genética , Haplotipos/genética , Humanos , Indígenas Norteamericanos/clasificación , Masculino , Filogeografía , Siberia/etnología , Esqueleto
7.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24522598

RESUMEN

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Asunto(s)
Genoma Humano/genética , Indígenas Norteamericanos/genética , Filogenia , Arqueología , Asia/etnología , Huesos , Entierro , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Emigración e Inmigración/historia , Europa (Continente)/etnología , Flujo Génico/genética , Haplotipos/genética , Historia Antigua , Humanos , Lactante , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Montana , Dinámica Poblacional , Datación Radiométrica
8.
Am J Hum Genet ; 99(1): 163-73, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27392075

RESUMEN

The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.


Asunto(s)
Cromosomas Humanos Y/genética , Haplotipos/genética , Lenguaje , Asia , Europa (Continente) , Humanos , Filogeografía , Factores de Tiempo
9.
Genome Res ; 25(4): 459-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25770088

RESUMEN

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


Asunto(s)
Cromosomas Humanos Y/genética , Evolución Molecular , Grupos Raciales/genética , Secuencia de Bases , ADN Mitocondrial/genética , Variación Genética/genética , Genética de Población , Haplotipos/genética , Humanos , Masculino , Modelos Genéticos , Filogenia , Análisis de Secuencia de ADN
10.
PLoS Genet ; 11(4): e1005068, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25898006

RESUMEN

The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries) that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.


Asunto(s)
Cromosomas/genética , Flujo Génico , Genética de Población , Migración Humana/historia , Asia , Pueblo Asiatico/genética , Pueblo Asiatico/historia , China , Cromosomas Humanos Y/genética , Etnicidad/genética , Etnicidad/historia , Europa (Continente) , Genotipo , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia Medieval , Humanos , Lenguaje , Medio Oriente , Mongolia , Polimorfismo de Nucleótido Simple/genética , Siberia
11.
Ann Hum Genet ; 79(6): 418-30, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26411886

RESUMEN

Variations of the nonrecombining Y-chromosomal region were investigated in 159 unrelated Baltic-speaking ethnic Latvians from four different geographic regions, using 28 biallelic markers and 12 short tandem repeats. Eleven different haplogroups (hgs) were detected in a regionally homogeneous Latvian population, among which N1c, R1a, and I1 cover more than 85% of its paternal lineages. When compared its closest geographic neighbors, the composition of the Latvian Y-chromosomal gene pool was found to be very similar to those of Lithuanians and Estonians. Despite the comparable frequency distribution of hg N1c in Latvians and Lithuanians with the Finno-Ugric-speaking populations from the Eastern coast of the Baltic Sea, the observed differences in allelic variances of N1c haplotypes between these two groups are in concordance with the previously stated hypothesis of different dispersal ways of this lineage in the region. More than a third of Latvian paternal lineages belong specifically to a recently defined R1a-M558 hg, indicating an influence from a common source within Eastern Slavic populations on the formation of the present-day Latvian Y-chromosome gene pool.


Asunto(s)
Cromosomas Humanos Y/genética , Pool de Genes , Variación Genética , Genética de Población , Marcadores Genéticos , Genotipo , Haplotipos , Humanos , Letonia , Masculino , Repeticiones de Microsatélite , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Población Blanca/genética
12.
Eur J Hum Genet ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605123

RESUMEN

The Oirats are a group of Mongolian-speaking peoples residing in Russia, China, and Mongolia, who speak Oirat dialects of the Mongolian language. Migrations of nomadic ethnopolitical formations of the Oirats across the Eurasian Steppe during the Late Middle Ages/early Modern times resulted in a wide geographic spread of Oirat ethnic groups from present-day northwestern China in East Asia to the Lower Volga region in Eastern Europe. In this study, we generate new genome-wide and mitochondrial DNA data for present-day Oirat-speaking populations from Kalmykia in Eastern Europe, Western Mongolia, and the Xinjiang region of China, as well as Issyk-Kul Sart-Kalmaks from Central Asia, and historically related ethnic groups from Altai, Tuva, and Northern Mongolia to study the genetic structure and history of the Oirats. Despite their spatial and temporal separation, small current population census, both the Kalmyks of Eastern Europe and the Oirats of Western Mongolia in East Asia are characterized by strong genetic similarity, high effective population size, and low levels of interpopulation structure. This contrasts the fine genetic structure observed today at a smaller geographic scale in traditionally sedentary populations, and is conditioned by high mobility and marriage practices (traditional strict exogamy) in nomadic groups. Conversely, the genetic profile of the Issyk-Kul Sart-Kalmaks suggests a distinct source(s) of genetic ancestry, along with indications of isolation and genetic drift compared to other Oirats. Our results also show that there was limited gene flow between the ancestors of the Oirats and the Altaians during the late Middle Ages. Source of the yurt image: https://www.vecteezy.com/free-vector/yurt .

13.
BMC Evol Biol ; 13: 127, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23782551

RESUMEN

BACKGROUND: Sakha--an area connecting South and Northeast Siberia--is significant for understanding the history of peopling of Northeast Eurasia and the Americas. Previous studies have shown a genetic contiguity between Siberia and East Asia and the key role of South Siberia in the colonization of Siberia. RESULTS: We report the results of a high-resolution phylogenetic analysis of 701 mtDNAs and 318 Y chromosomes from five native populations of Sakha (Yakuts, Evenks, Evens, Yukaghirs and Dolgans) and of the analysis of more than 500,000 autosomal SNPs of 758 individuals from 55 populations, including 40 previously unpublished samples from Siberia. Phylogenetically terminal clades of East Asian mtDNA haplogroups C and D and Y-chromosome haplogroups N1c, N1b and C3, constituting the core of the gene pool of the native populations from Sakha, connect Sakha and South Siberia. Analysis of autosomal SNP data confirms the genetic continuity between Sakha and South Siberia. Maternal lineages D5a2a2, C4a1c, C4a2, C5b1b and the Yakut-specific STR sub-clade of Y-chromosome haplogroup N1c can be linked to a migration of Yakut ancestors, while the paternal lineage C3c was most likely carried to Sakha by the expansion of the Tungusic people. MtDNA haplogroups Z1a1b and Z1a3, present in Yukaghirs, Evens and Dolgans, show traces of different and probably more ancient migration(s). Analysis of both haploid loci and autosomal SNP data revealed only minor genetic components shared between Sakha and the extreme Northeast Siberia. Although the major part of West Eurasian maternal and paternal lineages in Sakha could originate from recent admixture with East Europeans, mtDNA haplogroups H8, H20a and HV1a1a, as well as Y-chromosome haplogroup J, more probably reflect an ancient gene flow from West Eurasia through Central Asia and South Siberia. CONCLUSIONS: Our high-resolution phylogenetic dissection of mtDNA and Y-chromosome haplogroups as well as analysis of autosomal SNP data suggests that Sakha was colonized by repeated expansions from South Siberia with minor gene flow from the Lower Amur/Southern Okhotsk region and/or Kamchatka. The minor West Eurasian component in Sakha attests to both recent and ongoing admixture with East Europeans and an ancient gene flow from West Eurasia.


Asunto(s)
Pueblo Asiatico/genética , Genética de Población , Población Blanca/genética , Pueblo Asiatico/clasificación , Pueblo Asiatico/etnología , Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Asia Oriental/etnología , Femenino , Pool de Genes , Haplotipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleótido Simple , Siberia/etnología , Población Blanca/clasificación , Población Blanca/etnología
14.
Curr Biol ; 33(24): 5495-5504.e4, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-37995693

RESUMEN

The population history of the Sahara/Sahelian belt is understudied, despite previous work highlighting complex dynamics.1,2,3,4,5,6,7 The Sahelian Fulani, i.e., the largest nomadic pastoral population in the world,8 represent an interesting case because they show a non-negligible proportion of an Eurasian genetic component, usually explained by recent admixture with northern Africans.1,2,5,6,7,9,10,11,12 Nevertheless, their origins are largely unknown, although several hypotheses have been proposed, including a possible link to ancient peoples settled in the Sahara during its last humid phase (Green Sahara, 12,000-5,000 years before present [BP]).13,14,15 To shed light about the Fulani ancient genetic roots, we produced 23 high-coverage (30×) whole genomes from Fulani individuals from 8 Sahelian countries, plus 17 samples from other African groups and 3 from Europeans as controls, for a total of 43 new whole genomes. These data have been compared with 814 published modern whole genomes2,16,17,18 and with relevant published ancient sequences (> 1,800 samples).19 These analyses showed some evidence that the non-sub-Saharan genetic ancestry component of the Fulani might have also been shaped by older events,1,5,6 possibly tracing the Fulani origins to unsampled ancient Green Saharan population(s). The joint analysis of modern and ancient samples allowed us to shed light on the genetic ancestry composition of such ancient Saharans, suggesting a similarity with Late Neolithic Moroccans and possibly pointing to a link with the spread of cattle herding. We also identified two different Fulani clusters whose admixture pattern may be informative about the historical Fulani movements and their later involvement in the western African empires.


Asunto(s)
Población Negra , Genética de Población , Genómica , Humanos , África del Norte , Población Negra/genética
15.
Am J Hum Genet ; 84(6): 814-21, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19500771

RESUMEN

There are extensive data indicating that some glacial refuge zones of southern Europe (Franco-Cantabria, Balkans, and Ukraine) were major genetic sources for the human recolonization of the continent at the beginning of the Holocene. Intriguingly, there is no genetic evidence that the refuge area located in the Italian Peninsula contributed to this process. Here we show, through phylogeographic analyses of mitochondrial DNA (mtDNA) variation performed at the highest level of molecular resolution (52 entire mitochondrial genomes), that the most likely homeland for U5b3-a haplogroup present at a very low frequency across Europe-was the Italian Peninsula. In contrast to mtDNA haplogroups that expanded from other refugia, the Holocene expansion of haplogroup U5b3 toward the North was restricted by the Alps and occurred only along the Mediterranean coasts, mainly toward nearby Provence (southern France). From there, approximately 7,000-9,000 years ago, a subclade of this haplogroup moved to Sardinia, possibly as a result of the obsidian trade that linked the two regions, leaving a distinctive signature in the modern people of the island. This scenario strikingly matches the age, distribution, and postulated geographic source of a Sardinian Y chromosome haplogroup (I2a2-M26), a paradigmatic case in the European context of a founder event marking both female and male lineages.


Asunto(s)
Cromosomas Humanos Y/genética , ADN Mitocondrial/genética , Genética de Población , Haplotipos/genética , Paleopatología , Evolución Molecular , Femenino , Humanos , Italia , Masculino , Datos de Secuencia Molecular , Linaje
16.
Sci Adv ; 8(30): eabo4435, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895820

RESUMEN

Human herpes simplex virus 1 (HSV-1), a life-long infection spread by oral contact, infects a majority of adults globally. Phylogeographic clustering of sampled diversity into European, pan-Eurasian, and African groups has suggested the virus codiverged with human migrations out of Africa, although a much younger origin has also been proposed. We present three full ancient European HSV-1 genomes and one partial genome, dating from the 3rd to 17th century CE, sequenced to up to 9.5× with paired human genomes up to 10.16×. Considering a dataset of modern and ancient genomes, we apply phylogenetic methods to estimate the age of sampled modern Eurasian HSV-1 diversity to 4.68 (3.87 to 5.65) ka. Extrapolation of estimated rates to a global dataset points to the age of extant sampled HSV-1 as 5.29 (4.60 to 6.12) ka, suggesting HSV-1 lineage replacement coinciding with the late Neolithic period and following Bronze Age migrations.

17.
Genes (Basel) ; 12(10)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34680976

RESUMEN

A general imbalance in the proportion of disembarked males and females in the Americas has been documented during the Trans-Atlantic Slave Trade and the Colonial Era and, although less prominent, more recently. This imbalance may have left a signature on the genomes of modern-day populations characterised by high levels of admixture. The analysis of the uniparental systems and the evaluation of continental proportion ratio of autosomal and X chromosomes revealed a general sex imbalance towards males for European and females for African and Indigenous American ancestries. However, the consistency and degree of this imbalance are variable, suggesting that other factors, such as cultural and social practices, may have played a role in shaping it. Moreover, very few investigations have evaluated the sex imbalance using haplotype data, containing more critical information than genotypes. Here, we analysed genome-wide data for more than 5000 admixed American individuals to assess the presence, direction and magnitude of sex-biased admixture in the Americas. For this purpose, we applied two haplotype-based approaches, ELAI and NNLS, and we compared them with a genotype-based method, ADMIXTURE. In doing so, besides a general agreement between methods, we unravelled that the post-colonial admixture dynamics show higher complexity than previously described.


Asunto(s)
Genética de Población , Haplotipos/genética , Migración Humana , Negro o Afroamericano/genética , Américas , Cromosomas Humanos X/genética , Femenino , Genotipo , Humanos , Masculino , Herencia Materna/genética , Herencia Paterna/genética , Población Blanca/genética
18.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523926

RESUMEN

The transition from Stone to Bronze Age in Central and Western Europe was a period of major population movements originating from the Ponto-Caspian Steppe. Here, we report new genome-wide sequence data from 30 individuals north of this area, from the understudied western part of present-day Russia, including 3 Stone Age hunter-gatherers (10,800 to 4250 cal BCE) and 26 Bronze Age farmers from the Corded Ware complex Fatyanovo Culture (2900 to 2050 cal BCE). We show that Eastern hunter-gatherer ancestry was present in northwestern Russia already from around 10,000 BCE. Furthermore, we see a change in ancestry with the arrival of farming-Fatyanovo Culture individuals were genetically similar to other Corded Ware cultures, carrying a mixture of Steppe and European early farmer ancestry. Thus, they likely originate from a fast migration toward the northeast from somewhere near modern-day Ukraine-the closest area where these ancestries coexisted from around 3000 BCE.

19.
PLoS One ; 15(1): e0227446, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945091

RESUMEN

Two ancient Egyptian child mummies at the University of Tartu Art Museum (Estonia) were, according to museum records, brought to Estonia by the young Baltic-German scholar Otto Friedrich von Richter, who had travelled in Egypt during the early 19th century. Although some studies of the mummies were conducted, a thorough investigation has never been made. Thus, an interdisciplinary team of experts studied the remains using the most recent analytical methods in order to provide an exhaustive analysis of the remains. The bodies were submitted for osteological and archaeothanatological study, radiological investigation, AMS radiocarbon dating, chemical and textile analyses, 3D modelling, entomological as well as aDNA investigation. Here we synthesize the results of one of the most extensive multidisciplinary analyses of ancient Egyptian child mummies, adding significantly to our knowledge of such examples of ancient funerary practices.


Asunto(s)
Momias , Adolescente , Niño , Preescolar , Egipto , Antiguo Egipto , Estonia , Humanos , Masculino , Museos
20.
Sci Rep ; 9(1): 7786, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127140

RESUMEN

Hungarians who live in Central Europe today are one of the westernmost Uralic speakers. Despite of the proposed Volga-Ural/West Siberian roots of the Hungarian language, the present-day Hungarian gene pool is highly similar to that of the surrounding Indo-European speaking populations. However, a limited portion of specific Y-chromosomal lineages from haplogroup N, sometimes associated with the spread of Uralic languages, link modern Hungarians with populations living close to the Ural Mountain range on the border of Europe and Asia. Here we investigate the paternal genetic connection between these spatially separated populations. We reconstruct the phylogeny of N3a4-Z1936 clade by using 33 high-coverage Y-chromosomal sequences and estimate the coalescent times of its sub-clades. We genotype close to 5000 samples from 46 Eurasian populations to show the presence of N3a4-B539 lineages among Hungarians and in the populations from Ural Mountain region, including Ob-Ugric-speakers from West Siberia who are geographically distant but linguistically closest to Hungarians. This sub-clade splits from its sister-branch N3a4-B535, frequent today among Northeast European Uralic speakers, 4000-5000 ya, which is in the time-frame of the proposed divergence of Ugric languages.


Asunto(s)
Cromosomas Humanos Y , Pool de Genes , Genética de Población , Haplotipos , Humanos , Hungría , Lenguaje , Filogenia , Filogeografía , Siberia , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA