Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 38(3): 1574-1588, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38282115

RESUMEN

BACKGROUND AND AIM: Gefitinib resistance is an urgent problem to be solved in the treatment of non-small cell lung cancer (NSCLC). Tanshinone IIA (Tan IIA) is one of the main active components of Salvia miltiorrhiza, which exhibits significant antitumor effects. The aim of this study is to explore the reversal effect of Tan IIA on gefitinib resistance in the epidermal growth factor receptor (EGFR)-mutant NSCLC and the underlying mechanism. EXPERIMENTAL PROCEDURE: CCK-8, colony formation assay, and flow cytometry were applied to detect the cytotoxicity, proliferation, and apoptosis, respectively. The changes in lipid profiles were measured by electrospray ionization-mass spectrometry (MS)/MS. Western blot, real-time q-PCR, and immunohistochemical were used to detect the protein and the corresponding mRNA levels. The in vivo antitumor effect was validated by the xenograft mouse model. KEY RESULTS: Co-treatment of Tan IIA enhanced the sensitivity of resistant NSCLC cells to gefitinib. Mechanistically, Tan IIA could downregulate the expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream target genes, causing changes in lipid profiles, thereby reversing the gefitinib-resistance in EGFR-mutant NSCLC cells in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS: Tan IIA improved gefitinib sensitivity via SREBP1-mediated lipogenesis. Tan IIA could be a potential candidate to enhance sensitivity for gefitinib-resistant NSCLC patients.


Asunto(s)
Abietanos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/patología , Gefitinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proliferación Celular , Resistencia a Antineoplásicos , Receptores ErbB , Apoptosis , Lípidos , Línea Celular Tumoral
2.
Biopharm Drug Dispos ; 41(1-2): 54-63, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31943245

RESUMEN

Salvia miltiorrhiza is one of the most commonly used traditional Chinese medicines in the treatment of cardiovascular and cerebrovascular diseases. Cryptotanshinone (CTS), tanshinone IIA (Tan IIA), dihydrotanshinone I (diTan I), and tanshinone I (Tan I) are the main active compounds in the liposoluble extract of Salvia miltiorrhiza. The differences in the pharmacokinetic and tissue distribution behaviors of the four tanshinones after oral administration of the liposoluble extract of Salvia miltiorrhiza and pure compounds are not clear. This study aims to compare the pharmacokinetics and tissue distribution of the four tanshinones after oral administration of pure tanshinone monomers and the liposoluble extract of Salvia miltiorrhiza. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis method was developed for the determination of the four tanshinones. The results showed that the AUC and Cmax of tanshinones in rats receiving the extract of Salvia miltiorrhiza were significantly increased compared with those receiving the pure tanshinones. In the tissue distribution experiments, the AUC of the four tanshinones in the extract was much greater than the AUC of the monomers in the lung, heart, kidney, liver, and brain, and the coexisting constituents particularly promoted the distribution of tanshinones into tissues that the drug cannot sufficiently penetrate. These findings suggested that the coexisting constituents in the liposoluble extract of Salvia miltiorrhiza play an important role in the alteration of plasma concentration and tissue distribution of the four tanshinones. Understanding these differences could be of significance for the development and application of Salvia miltiorrhiza extract and tanshinone components.


Asunto(s)
Abietanos/farmacocinética , Fenantrenos/farmacocinética , Extractos Vegetales/química , Salvia miltiorrhiza/química , Abietanos/química , Animales , Área Bajo la Curva , Cromatografía Liquida , Semivida , Lípidos/química , Masculino , Estructura Molecular , Fenantrenos/química , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
3.
Chin J Integr Med ; 30(4): 379-384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38157118

RESUMEN

Phellodendron (PN) species, traditionally used in Chinese medicine for centuries, hold promise as a potential treatment for osteoporosis (OP) and osteoarthritis (OA) due to their bioactive compounds. The bioactive compounds, including berberine and palmatine, exhibit anti-inflammatory, antioxidant, and bone-protective properties, contributing to their potential therapeutic benefits in promoting bone health and preventing bone loss. However, challenges such as the need for standardized preparation and dosing, limited clinical studies, and potential interactions with other medications hinder their clinical use. Nonetheless, the rich history of PN species in Chinese medicine provides a promising foundation for future investigation into their potential as alternative treatments for OP and OA. Further research is needed to fully understand the underlying mechanisms of action and explore the clinical implications of PN for bone health.


Asunto(s)
Osteoartritis , Osteoporosis , Phellodendron , Densidad Ósea , Osteoporosis/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Huesos
4.
J Ethnopharmacol ; 327: 117939, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38382651

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii polyglycosides (TWP) tablet is the most widely used traditional Chinese medicine preparation for the treatment of rheumatoid arthritis (RA), but the hepatotoxicity often limits its widespread application. In traditional use, Salvia miltiorrhiza has cardioprotective and hepatoprotective effects. Salvianolic acid extract (SA) is a hydrophilic component of Salvia miltiorrhiza and has significant antioxidant and hepatoprotective effects. AIM OF THE STUDY: To investigate the protective effects of SA on the TWP-induced acute liver injury in rats and to explore the related mechanisms by integration of metabolomics and transcriptomics. MATERIALS AND METHODS: SA and TWP extracts were identified by UPLC-Q/TOF-MS. SA (200 mg/kg) was administered for consecutive 7 days. On day 7, TWP (360 mg/kg) was administered by gavage to induce the acute liver injury in rats. Serum biochemical assay and H&E staining were used to evaluate liver damage. Liver metabolomics and transcriptomics were used to explore the potential mechanisms, and further molecular biological experiments such as qPCR and IHC were utilized to validate the relevant signaling pathways. RESULTS: SA can prevent liver injury symptoms caused by TWP, such as elevated liver index, elevated ALT and AST, and pathological changes in liver tissue. Liver metabolomics studies showed that TWP can significantly alter the content of individual bile acid in the liver and SA had the most significant impact on the biosynthetic pathway of bile acids. The transcriptomics results of the liver indicated that the genes changed in the SA + TWP group were mainly involved in sterol metabolism, lipid regulation and bile acid homeostasis pathways. The gene expression of Nr1h4, which encodes farnesoid X receptor (FXR), an important regulator of bile acid homeostasis, was significantly changed. Further studies confirmed that SA can prevent the downregulation of FXR and its downstream signaling induced by TWP, thereby regulating bile acid metabolism, ultimately preventing acute liver injury caused by TWP. CONCLUSION: Our results demonstrated that SA could protect the liver from TWP-induced hepatic injury by modulation of the bile acid metabolic pathway. SA may provide a new strategy for the protection against TWP-induced acute liver injury.


Asunto(s)
Alquenos , Polifenoles , Salvia miltiorrhiza , Tripterygium , Ratas , Animales , Hígado , Ácidos y Sales Biliares , Salvia miltiorrhiza/química , Metabolismo de los Lípidos
5.
Toxicol In Vitro ; 86: 105487, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36272531

RESUMEN

Triptolide (TP) is one of the major components of Tripterygium wilfordii, which is a traditional Chinese medicine widely used in the treatment of various autoimmune and inflammatory diseases. However, the cardiotoxicity induced by TP greatly limits its widespread clinical application. In view of the role of ROS-mediated oxidative stress in TP-induced cardiotoxicity, mitoQ, a mitochondria-targeted ROS scavenger, was used in this study to investigate its protective effect against TP-induced cardiomyocyte toxicity and its possible underlying mechanism. Here we demonstrated that mitoQ could significantly attenuate TP-induced cardiotoxicity in cardiomyocyte H9c2 cells, with a remarkable improvement in cell viability and reduction in ROS levels. P62-Nrf2 signaling pathway has been reported to play a critical role in regulating oxidative stress and protecting cells from harmful stimuli. In this study, we found that mitoQ significantly activated p62-Nrf2 signaling pathway in H9c2 cells with or without TP treatment. Moreover, knockdown of p62 or Nrf2 could block the protective effect of mitoQ against TP in H9c2 cells. Taken together, our study demonstrates that mitoQ can alleviate TP-induced cardiotoxicity via the activation of p62-Nrf2 signaling pathway, which provides new potential strategies to combat TP-induced cardiomyocyte toxicity.


Asunto(s)
Cardiotoxicidad , Factor 2 Relacionado con NF-E2 , Ubiquinona , Humanos , Apoptosis , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
6.
J Ethnopharmacol ; 317: 116782, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37321427

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii polyglycosides (TWP), extracted from the traditional Chinese herb Tripterygium wilfordii, has been widely used in the treatment of rheumatoid arthritis (RA). However, the toxicity of TWP to a variety of organs such as liver, kidney and testis greatly limits its clinical application. Salvia miltiorrhiza Bunge is often used in the treatment of RA due to its blood circulation promoting, stasis resolving, and anti-inflammatory effects. Salvia miltiorrhiza Bunge has also been reported to possess multiple organ protective effects. AIM OF THE STUDY: To investigate the influences of two main components of Salviorrhiza miltiorrhiza Bunge, hydrophilic salvianolic acids (SA) and lipophilic tanshinones (Tan), on the efficacy and toxicity of TWP in treating RA and to explore the underlying mechanisms. MATERIALS AND METHODS: SA and Tan were extracted from Salvia miltiorrhiza Bunge and the extracts were quantitated by HPLC and identified by UPLC-Q/TOF-MS. Then, a collagen-induced arthritis (CIA) rat model was established using bovine type II collagen (CII) and incomplete Freund's adjuvant (IFA). CIA rats were treated with TWP and/or SA/Tan. After 21 days of continuous treatment, arthritis symptoms and organs toxicity were evaluated. Meanwhile, serum metabolomics were investigated by the UPLC-Q/TOF-MS to understand the underlying mechanism. RESULTS: SA and Tan extracts could significantly alleviate arthritis symptoms in CIA rats and decrease the serum levels of inflammatory factors TNF-α, IL-1ß and IL-6 when combined with TWP. Meanwhile, both extracts alleviated injury of liver, kidney and testis caused by TWP, and the hydrophilic extract SA was superior. Moreover, a total of 38 endogenous differential metabolites were identified between the CIA model group and the TWP group, among which 33 metabolites were significantly recovered after the combination of SA or Tan. Metabolic pathway analysis showed that SA and Tan can affect metabolic pathways including linoleic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and steroid biosynthesis metabolism pathway. CONCLUSIONS: Our findings indicated for the first time that two Salviorrhiza miltiorrhiza Bunge extracts could improve the efficacy and reduce the toxicity of TWP in the treatment of RA by adjusting metabolic pathways, and the hydrophilic extract SA was superior.


Asunto(s)
Antineoplásicos , Artritis Reumatoide , Salvia miltiorrhiza , Masculino , Ratas , Animales , Bovinos , Tripterygium , Artritis Reumatoide/tratamiento farmacológico , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA