Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 978
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(4): 687-701.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266641

RESUMEN

Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Neoplasias , Humanos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , ARN , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , ARN no Traducido/genética
2.
Genes Dev ; 33(1-2): 75-89, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30567999

RESUMEN

Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.


Asunto(s)
Biotinilación/métodos , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Factores de Transcripción/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteína Homóloga de MRE11/metabolismo , Unión Proteica , Transporte de Proteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nat Mater ; 23(4): 479-485, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216725

RESUMEN

In anisotropic crystals, the direction-dependent effective mass of carriers can have a profound impact on spin transport dynamics. The puckered crystal structure of black phosphorus leads to direction-dependent charge transport and optical response, suggesting that it is an ideal system for studying anisotropic spin transport. To this end, we fabricate and characterize high-mobility encapsulated ultrathin black-phosphorus-based spin valves in a four-terminal geometry. Our measurements show that in-plane spin lifetimes are strongly gate tunable and exceed one nanosecond. Through high out-of-plane magnetic fields, we observe a fivefold enhancement in the out-of-plane spin signal case compared to in-plane and estimate a colossal spin-lifetime anisotropy of ∼6. This finding is further confirmed by oblique Hanle measurements. Additionally, we estimate an in-plane spin-lifetime anisotropy ratio of up to 1.8. Our observation of strongly anisotropic spin transport along three orthogonal axes in this pristine material could be exploited to realize directionally tunable spin transport.

4.
Plant Physiol ; 194(3): 1467-1480, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38036295

RESUMEN

Root growth is sustained by cell division and differentiation of the root apical meristem (RAM), in which brassinosteroid (BR) signaling mediated via the dynamic targeting of BRASSINOSTEROID-INSENSITIVE1 (BRI1) plays complex roles. BRI1 is constitutively secreted to the plasma membrane (PM), internalized, and recycled or delivered into vacuoles, whose PM abundance is critical for BR signaling. Vesicle-target membrane fusion is regulated by heterotetrameric SNARE complexes. SNARE proteins have been implicated in BRI1 targeting, but how SNAREs affect RAM development is unclear. We report that Arabidopsis (Arabidopsis thaliana) YKT61, an atypical R-SNARE protein, is critical for BR-controlled RAM development through the dynamic targeting of BRI1. Functional loss of YKT61 is lethal for both male and female gametophytes. By using weak mutant alleles of YKT61, ykt61-partially complemented (ykt61-pc), we show that YKT61 knockdown results in a reduction of RAM length due to reduced cell division, similar to that in bri1-116. YKT61 physically interacts with BRI1 and is critical for the dynamic recycling of BRI1 to the PM. We further determine that YKT61 is critical for the dynamic biogenesis of vacuoles, for the maintenance of Golgi morphology, and for endocytosis, which may have a broad effect on development. Endomembrane compartments connected via vesicular machinery, such as SNAREs, influence nuclear-controlled cellular activities such as division and differentiation by affecting the dynamic targeting of membrane proteins, supporting a retro-signaling pathway from the endomembrane system to the nucleus.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brasinoesteroides , División Celular , Meristema/genética , Proteínas R-SNARE/genética , Proteínas SNARE
5.
Nano Lett ; 24(2): 623-631, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38048272

RESUMEN

The cooling power of a radiative cooler is more than halved in the tropics, e.g., Singapore, because of its harsh weather conditions including high humidity (84% on average), strong downward atmospheric radiation (∼40% higher than elsewhere), abundant rainfall, and intense solar radiation (up to 1200 W/m2 with ∼58% higher UV irradiation). So far, there has been no report of daytime radiative cooling that well achieves effective subambient cooling. Herein, through integrated passive cooling strategies in a hydrogel with desirable optofluidic properties, we demonstrate stable subambient (4-8 °C) cooling even under the strongest solar radiation in Singapore. The integrated passive cooler achieves an ultrahigh cooling power of ∼350 W/m2, 6-10 times higher than a radiative cooler in a tropical climate. An in situ study of radiative cooling with various hydration levels and ambient humidity is conducted to understand the interaction between radiation and evaporative cooling. This work provides insights for the design of an integrated cooler for various climates.

6.
Apoptosis ; 29(5-6): 649-662, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38409352

RESUMEN

Cumulus granulosa cells (CGCs) play a crucial role in follicular development, but so far, no research has explored the impact of SARS-CoV-2 infection on ovarian function from the perspective of CGCs. In the present study, we compared the cycle outcomes between infected and uninfected female patients undergoing controlled ovarian stimulation, performed bulk RNA-sequencing of collected CGCs, and used bioinformatic methods to explore transcriptomic changes. The results showed that women with SARS-CoV-2 infection during stimulation had significantly lower number of oocytes retrieved and follicle-oocyte index, while subsequent fertilization and embryo development were similar. CGCs were not directly infected by SARS-CoV-2, but exhibited dramatic differences in gene expression (156 up-regulated and 65 down-regulated). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses demonstrated a high enrichment in antiviral, immune and inflammatory responses with necroptosis. In addition, the pathways related to telomere organization and double strand break repair were significantly affected by infection in gene set enrichment analysis. Further weighted gene co-expression network analysis identified a key module associated with ovarian response traits, which was mainly enriched as a decrease of leukocyte chemotaxis and migration in CGCs. For the first time, our study describes how SARS-CoV-2 infection indirectly affects CGCs at the transcriptional level, which may impair oocyte-CGC crosstalk and consequently lead to poor ovarian response during fertility treatment.


Asunto(s)
COVID-19 , Células del Cúmulo , Inducción de la Ovulación , SARS-CoV-2 , Transcriptoma , Humanos , Femenino , COVID-19/virología , COVID-19/genética , SARS-CoV-2/fisiología , SARS-CoV-2/genética , Adulto , Células del Cúmulo/metabolismo , Células del Cúmulo/virología , Células de la Granulosa/virología , Células de la Granulosa/metabolismo , Oocitos/virología , Oocitos/metabolismo , Recuperación del Oocito
7.
Biochem Biophys Res Commun ; 727: 150308, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38968769

RESUMEN

Excessive autophagy may lead to degradation and damage of alveolar epithelial cells after lung transplantation, eventually leading to alveolar epithelial cell loss, affecting the structural integrity and function of alveoli. Glutamine (Gln), a nutritional supplement, regulates autophagy through multiple signaling pathways. In this study, we explored the protective role of Gln on alveolar epithelial cells by inhibiting autophagy. In vivo, a rat orthotopic lung transplant model was carried out to evaluate the therapeutic effect of glutamine. Ischemia/reperfusion (I/R) induced alveolar collapse, edema, epithelial cell apoptosis, and inflammation, which led to a reduction of alveolar physiological function, such as an increase in peak airway pressure, and a decrease in lung compliance and oxygenation index. In comparison, Gln preserved alveolar structure and function by reducing alveolar apoptosis, inflammation, and edema. In vitro, a hypoxia/reoxygenation (H/R) cell model was performed to simulate IR injury on mouse lung epithelial (MLE) cells and human lung bronchus epithelial (Beas-2B) cells. H/R impaired the proliferation of epithelial cells and triggered cell apoptosis. In contrast, Gln normalized cell proliferation and suppressed I/R-induced cell apoptosis. The activation of mTOR and the downregulation of autophagy-related proteins (LC3, Atg5, Beclin1) were observed in Gln-treated lung tissues and alveolar epithelial cells. Both in vivo and in vitro, rapamycin, a classical mTOR inhibitor, reversed the beneficial effects of Gln on alveolar structure and function. Taken together, Glnpreserved alveolar structure and function after lung transplantation by inhibiting autophagy.


Asunto(s)
Autofagia , Glutamina , Trasplante de Pulmón , Alveolos Pulmonares , Ratas Sprague-Dawley , Daño por Reperfusión , Autofagia/efectos de los fármacos , Animales , Glutamina/metabolismo , Glutamina/farmacología , Masculino , Humanos , Ratones , Ratas , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Apoptosis/efectos de los fármacos , Línea Celular , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología
8.
Small ; 20(4): e2305841, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712105

RESUMEN

Pitch-derived carbon (PC) anode features the merits of low-cost, rich edge-defect sites, and tunable crystallization degree for potassium ion batteries (PIBs). However, gaining the PC anode with both rich edge-defect sites and robust structure remains challenging. Herein, micro-sized and robust PC/expanded-graphite (EG) composites (EGC) with rich edge-defect sites are massively synthesized via melting impregnation and confined pyrolysis. The PC is in situ encapsulated in micro-sized EG skeleton with robust chemical bonds between PC and EG after thermal treatment, endowing the structural stability as micro-sized carbon-carbon composites. The confinement effect originating from EG skeleton could suppress the crystallization degree of the PC and contribute rich edge-defect sites in EGC composites. Additionally, the EG skeleton inside EGC could form continuous electronic conduction nets and establish low-tortuosity carbonaceous electrodes, facilitating rapid electron/ion migration. While applied in PIBs, the EGC anode delivers a reversible capacity that up to 338.5 mAh g-1 at 0.1 A g-1 , superior rate performance of 127.5 mAh g-1 at 5.0 A g-1 , and long-term stability with 204.8 mAh g-1 retain after 700 cycles at 1.0 A g-1 . This novel strategy highlights an interesting category of heterogeneous carbon-carbon composite materials to keep pace with the demand for the future PIBs industry.

9.
Hepatology ; 77(1): 124-143, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429173

RESUMEN

BACKGROUND AIMS: As a global health threat, NASH has been confirmed to be a chronic progressive liver disease that is strongly associated with obesity. However, no approved drugs or efficient therapeutic strategies are valid, mainly because its complicated pathological processes is underestimated. APPROACH RESULTS: We identified the RING-type E3 ubiquitin transferase-tripartite motif-containing protein 31 (TRIM31), a member of the E3 ubiquitin ligases family, as an efficient endogenous inhibitor of transforming growth factor-beta-activated kinase 1 (mitogen-activated protein kinase kinase kinase 7; MAP3K7), and we further confirmed that TRIM31 is an MAP3K7-interacting protein and promotes MAP3K7 degradation by enhancing ubiquitination of K48 linkage in hepatocytes. Hepatocyte-specific Trim31 deletion blocks hepatic metabolism homeostasis, concomitant with glucose metabolic syndrome, lipid accumulation, up-regulated inflammation, and dramatically facilitates NASH progression. Inversely, transgenic overexpression, lentivirus, or adeno-associated virus-mediated Trim31 gene therapy restrain NASH in three dietary mice models. Mechanistically, in response to metabolic insults, TRIM31 interacts with MAP3K7 and conjugates K48-linked ubiquitination chains to promote MAP3K7 degradation, thus blocking MAP3K7 abundance and its downstream signaling cascade activation in hepatocytes. CONCLUSIONS: TRIM31 may serve as a promising therapeutic target for NASH treatment and associated metabolic disorders.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Ratones , Quinasas Quinasa Quinasa PAM/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Proteínas de Motivos Tripartitos/metabolismo
10.
Toxicol Appl Pharmacol ; 484: 116877, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38431228

RESUMEN

Breast cancer, the most common cancer, presents a significant challenge to the health and longevity of women. Aspongopus chinensis Dallas is an insect with known anti-breast cancer properties. However, the anti-breast cancer effects and underlying mechanisms have not been elucidated. Exogenous microRNAs (miRNAs), which are derived from plants and animals, have been revealed to have notable capacities for controlling the proliferation of cancerous cells. To elucidate the inhibitory effects of miRNAs derived from A. chinensis and the regulatory mechanism involved in the growth of breast cancer cells, miRNA sequencing was initially employed to screen for miRNAs both in A. chinensis hemolymph and decoction and in mouse serum and tumor tissue after decoction gavage. Subsequently, the experiments were performed to assess the suppressive effect of ach-miR-276a-3p, the miRNA screened out from a previous study, on the proliferation of MDA-MB-231 and MDA-MB-468 breast cancer cell lines in vitro and in vivo. Finally, the regulatory mechanism of ach-miR-276a-3p in MDA-MB-231 and MDA-MB-468 breast cancer cells was elucidated. The results demonstrated that ach-miR-276a-3p notably inhibited breast cancer cell proliferation, migration, colony formation, and invasion and induced cell cycle arrest at the G0/G1 phase. Moreover, the ach-miR-276a-3p mimics significantly reduced the tumor volume and weight in xenograft tumor mice. Furthermore, ach-miR-276a-3p could induce cell cycle arrest by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway. In summary, ach-miR-276a-3p, derived from A. chinensis, has anti-breast cancer activity by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway and can serve as a promising candidate anticancer agent.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Animales , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Puntos de Control del Ciclo Celular , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Quinasa 2 Dependiente de la Ciclina/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
11.
Cancer Cell Int ; 24(1): 134, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622617

RESUMEN

Some noncoding RNAs (ncRNAs) carry open reading frames (ORFs) that can be translated into micropeptides, although noncoding RNAs (ncRNAs) have been previously assumed to constitute a class of RNA transcripts without coding capacity. Furthermore, recent studies have revealed that ncRNA-derived micropeptides exhibit regulatory functions in the development of many tumours. Although some of these micropeptides inhibit tumour growth, others promote it. Understanding the role of ncRNA-encoded micropeptides in cancer poses new challenges for cancer research, but also offers promising prospects for cancer therapy. In this review, we summarize the types of ncRNAs that can encode micropeptides, highlighting recent technical developments that have made it easier to research micropeptides, such as ribosome analysis, mass spectrometry, bioinformatics methods, and CRISPR/Cas9. Furthermore, based on the distribution of micropeptides in different subcellular locations, we explain the biological functions of micropeptides in different human cancers and discuss their underestimated potential as diagnostic biomarkers and anticancer therapeutic targets in clinical applications, information that may contribute to the discovery and development of new micropeptide-based tools for early diagnosis and anticancer drug development.

12.
J Biomed Sci ; 31(1): 4, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212768

RESUMEN

BACKGROUND: Metabolic remodeling and changes in tumor immune microenvironment (TIME) in osteosarcoma are important factors affecting prognosis and treatment. However, the relationship between metabolism and TIME needs to be further explored. METHODS: RNA-Seq data and clinical information of 84 patients with osteosarcoma from the TARGET database and an independent cohort from the GEO database were included in this study. The activity of seven metabolic super-pathways and immune infiltration levels were inferred in osteosarcoma patients. Metabolism-related genes (MRGs) were identified and different metabolic clusters and MRG-related gene clusters were identified using unsupervised clustering. Then the TIME differences between the different clusters were compared. In addition, an MRGs-based risk model was constructed and the role of a key risk gene, ST3GAL4, in osteosarcoma cells was explored using molecular biological experiments. RESULTS: This study revealed four key metabolic pathways in osteosarcoma, with vitamin and cofactor metabolism being the most relevant to prognosis and to TIME. Two metabolic pathway-related clusters (C1 and C2) were identified, with some differences in immune activating cell infiltration between the two clusters, and C2 was more likely to respond to two chemotherapeutic agents than C1. Three MRG-related gene clusters (GC1-3) were also identified, with significant differences in prognosis among the three clusters. GC2 and GC3 had higher immune cell infiltration than GC1. GC3 is most likely to respond to immune checkpoint blockade and to three commonly used clinical drugs. A metabolism-related risk model was developed and validated. The risk model has strong prognostic predictive power and the low-risk group has a higher level of immune infiltration than the high-risk group. Knockdown of ST3GAL4 significantly inhibited proliferation, migration, invasion and glycolysis of osteosarcoma cells and inhibited the M2 polarization of macrophages. CONCLUSION: The metabolism of vitamins and cofactors is an important prognostic regulator of TIME in osteosarcoma, MRG-related gene clusters can well reflect changes in osteosarcoma TIME and predict chemotherapy and immunotherapy response. The metabolism-related risk model may serve as a useful prognostic predictor. ST3GAL4 plays a critical role in the progression, glycolysis, and TIME of osteosarcoma cells.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Osteosarcoma/genética , Vitaminas , Inmunoterapia , Neoplasias Óseas/genética , Redes y Vías Metabólicas , Microambiente Tumoral/genética , Pronóstico
13.
Horm Metab Res ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286402

RESUMEN

The World Health Organization (WHO) predicted that patients with diabetes around the world will increase to 600 million by 2040, of which about 1/3 will develop diabetic nephropathy (DN). Therefore, the present study aimed to uncover therapeutic effect of HINT2 and determined its possible mechanisms. Patients with diabetes mellitus and normal volunteers were enrolled at our hospital. Male C57BL/6 mice were fed with a high fat diet and injected intraperitoneally with STZ for once (100 mg/kg body weight). Mouse podocytes (MPC5) cells were induced with 20 mmol/l D-glucose. Inhibition of HINT2 mRNA expression levels in patients with DN was observed, compared with normal group. The serum of HINT2 mRNA expression was negative in correlation with blood sugar, tubulo-interstitial damage, glomerular damage score or urine protein level in patients with DN. HINT2 expression in kidney tissue of mice with DN were downregulated. HINT2 presented reduced DN and inflammation and ROS-induced oxidative stress in model of DN. HINT2 promoted ferroptosis in model of DN by mitochondrial membrane potential. HINT2 suppressed MCU expression in model of DN. HINT2 protein combined with MCU protein increased MCU protein ubiquitination. HINT2 triggers mitochondrial Ca2+ influx to increase ROS production level by MCU. Taken together, these findings demonstrated that HINT2 reduced ROS-induced Oxidative stress and ferroptosis by MCU, suggesting that HINT2 may be a feasible strategy to treat DN.

14.
Cell Mol Life Sci ; 80(5): 123, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071198

RESUMEN

Alzheimer's disease (AD), as the most common type of dementia, has two pathological hallmarks, extracellular senile plaques composed of ß-amyloid peptides and intracellular neurofibrillary tangles containing phosphorylated-tau protein. Amyloid precursor protein (APP) and tau each play central roles in AD, although how APP and tau interact and synergize in the disease process is largely unknown. Here, we showed that soluble tau interacts with the N-terminal of APP in vitro in cell-free and cell culture systems, which can be further confirmed in vivo in the brain of 3XTg-AD mouse. In addition, APP is involved in the cellular uptake of tau through endocytosis. APP knockdown or N-terminal APP-specific antagonist 6KApoEp can prevent tau uptake in vitro, resulting in an extracellular tau accumulation in cultured neuronal cells. Interestingly, in APP/PS1 transgenic mouse brain, the overexpression of APP exacerbated tau propagation. Moreover, in the human tau transgenic mouse brain, overexpression of APP promotes tau phosphorylation, which is significantly remediated by 6KapoEp. All these results demonstrate the important role of APP in the tauopathy of AD. Targeting the pathological interaction of N-terminal APP with tau may provide an important therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Ratones , Humanos , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos
15.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937844

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Asunto(s)
Aldo-Ceto Reductasas , Curcumina , Enfermedad del Hígado Graso no Alcohólico , Triglicéridos , Curcumina/farmacología , Curcumina/análogos & derivados , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Humanos , Células Hep G2 , Aldo-Ceto Reductasas/metabolismo , Ratas , Masculino , Triglicéridos/sangre , Triglicéridos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Dieta Alta en Grasa/efectos adversos , Simulación del Acoplamiento Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo , Metformina/farmacología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Rodanina/análogos & derivados , Tiazolidinas
16.
BMC Med Inform Decis Mak ; 24(1): 197, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030567

RESUMEN

BACKGROUND: The risk assessment for survival in heart failure (HF) remains one of the key focuses of research. This study aims to develop a simple and feasible nomogram model for survival in HF based on the Heart Failure-A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION) to support clinical decision-making. METHODS: The HF patients were extracted from the HF-ACTION database and randomly divided into a training cohort and a validation cohort at a ratio of 7:3. Multivariate Cox regression was used to identify and integrate significant prognostic factors to form a nomogram, which was displayed in the form of a static nomogram. Bootstrap resampling (resampling = 1000) and cross-validation was used to internally validate the model. The prognostic performance of the model was measured by the concordance index (C-index), calibration curve, and the decision curve analysis. RESULTS: There were 1394 patients with HF in the overall analysis. Seven prognostic factors, which included age, body mass index (BMI), sex, diastolic blood pressure (DBP), exercise duration, peak exercise oxygen consumption (peak VO2), and loop diuretic, were identified and applied to the nomogram construction based on the training cohort. The C-index of this model in the training cohort was 0.715 (95% confidence interval (CI): 0.700, 0.766) and 0.662 (95% CI: 0.646, 0.752) in the validation cohort. The area under the ROC curve (AUC) value of 365- and 730-day survival is (0.731, 0.734) and (0.640, 0.693) respectively in the training cohort and validation cohort. The calibration curve showed good consistency between nomogram-predicted survival and actual observed survival. The decision curve analysis (DCA) revealed net benefit is higher than the reference line in a narrow range of cutoff probabilities and the result of cross-validation indicates that the model performance is relatively robust. CONCLUSIONS: This study created a nomogram prognostic model for survival in HF based on a large American population, which can provide additional decision information for the risk prediction of HF.


Asunto(s)
Insuficiencia Cardíaca , Nomogramas , Humanos , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/terapia , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Anciano , Medición de Riesgo
17.
J Appl Clin Med Phys ; 25(7): e14342, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38590112

RESUMEN

BACKGROUND: Rescanning is a common technique used in proton pencil beam scanning to mitigate the interplay effect. Advances in machine operating parameters across different generations of particle therapy systems have led to improvements in beam delivery time (BDT). However, the potential impact of these improvements on the effectiveness of rescanning remains an underexplored area in the existing research. METHODS: We systematically investigated the impact of proton machine operating parameters on the effectiveness of layer rescanning in mitigating interplay effect during lung SBRT treatment, using the CIRS phantom. Focused on the Hitachi synchrotron particle therapy system, we explored machine operating parameters from our institution's current (2015) and upcoming systems (2025A and 2025B). Accumulated dynamic 4D dose were reconstructed to assess the interplay effect and layer rescanning effectiveness. RESULTS: Achieving target coverage and dose homogeneity within 2% deviation required 6, 6, and 20 times layer rescanning for the 2015, 2025A, and 2025B machine parameters, respectively. Beyond this point, further increasing the number of layer rescanning did not further improve the dose distribution. BDTs without rescanning were 50.4, 24.4, and 11.4 s for 2015, 2025A, and 2025B, respectively. However, after incorporating proper number of layer rescanning (six for 2015 and 2025A, 20 for 2025B), BDTs increased to 67.0, 39.6, and 42.3 s for 2015, 2025A, and 2025B machine parameters. Our data also demonstrated the potential problem of false negative and false positive if the randomness of the respiratory phase at which the beam is initiated is not considered in the evaluation of interplay effect. CONCLUSION: The effectiveness of layer rescanning for mitigating interplay effect is affected by machine operating parameters. Therefore, past clinical experiences may not be applicable to modern machines.


Asunto(s)
Neoplasias Pulmonares , Fantasmas de Imagen , Terapia de Protones , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Terapia de Protones/métodos , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo/efectos de la radiación
18.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920362

RESUMEN

Twelve compounds, comprising of four new ones, 6ß,7α-limondiol (1) and ethyl 19-hydroxyisoobacunoate diosphenol (2), N-benzoyl 3-prenyltyramine (9) and 9-O-methyl integrifoliodiol (12), were isolated from the twigs with leaves of Tetradium trichotomum. The structures were elucidated by analysis of MS, NMR, and single-crystal X-ray diffraction. Compounds 1, 6, 8, 9 and 12 exhibited immunosuppressive activities in vitro against the proliferation of ConA-induced T lymphocytes and LPS-induced B cells.

19.
Int Orthop ; 48(8): 2243-2250, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777971

RESUMEN

PURPOSE: To compare the clinical efficacy of mini-open (air/water medium) endoscopy-assisted anterior cervical discectomy and fusion (MOEA-ACDF) and anterior cervical decompression and fusion (ACDF) for cervical spondylotic myelopathy (CSM). METHODS: This study retrospectively analysed the clinical data of CSM patients who received surgical treatment from January 1, 2020, to December 31, 2022. Patients were divided into two groups according to the surgical method: the MOEA-ACDF group and the ACDF group. The preoperative and postoperative imaging results at one week and the last follow-up examination were compared between the two groups. The Japanese Orthopaedic Association (JOA) score, visual analogue scale (VAS) score and neck disability index (NDI) score were used to evaluate the clinical outcomes preoperatively, one week postoperatively and at the last follow-up examination. The minimum follow-up duration was 12 months. RESULTS: A total of 131 CSM patients who underwent surgery at our institution were included, including 61 patients in the MOEA-ACDF group and 70 patients in the ACDF group. In the MOEA-ACDF group, the postoperative C2-C7 Cobb angle and HAVB were significantly greater than the preoperative values (P < 0.05). In the ACDF group, the postoperative C2-C7 Cobb angle was also significantly greater than the preoperative value, and the C2-C7 ROM and HAVB significantly decreased (P < 0.05). The postoperative neurological function of the patients in both groups improved, and the postoperative VAS score and NDI score significantly decreased. Compared with ACDF, MOEA-ACDF is associated with a significantly larger postoperative C2-C7 Cobb angle and significantly better C2-C7 ROM and HAVB, as well as better clinical efficacy (P < 0.05). CONCLUSIONS: MOEA-ACDF combines endoscopic systems with ACDF technology to treat CSM, but its clinical efficacy is not inferior to that of ACDF in the short- to intermediate-term. It can effectively and safely restore the cervical intervertebral height, physiological curvature, and range of motion.


Asunto(s)
Vértebras Cervicales , Discectomía , Endoscopía , Fusión Vertebral , Espondilosis , Humanos , Masculino , Fusión Vertebral/métodos , Fusión Vertebral/efectos adversos , Femenino , Persona de Mediana Edad , Vértebras Cervicales/cirugía , Vértebras Cervicales/diagnóstico por imagen , Estudios Retrospectivos , Discectomía/métodos , Discectomía/efectos adversos , Espondilosis/cirugía , Espondilosis/diagnóstico por imagen , Endoscopía/métodos , Resultado del Tratamiento , Anciano , Descompresión Quirúrgica/métodos , Descompresión Quirúrgica/efectos adversos , Adulto , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/diagnóstico por imagen
20.
Int Orthop ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969821

RESUMEN

PURPOSE: This study aimed to assess the clinical effectiveness and safety of percutaneous endoscopic interlaminar discectomy (PEID) in the management of high-grade migrated Lumbar disc herniation (LDH). METHODS: A total of 328 patients who underwent PEID for high-grade migrated LDH between May 2020 and January 2023 in our hospital were selected. Patients were categorized into high-grade migrated group and low-grade migrated group according to preoperative MRI findings. The preoperative and postoperative evaluations of clinical outcomes, such as Visual Analogue Scale (VAS) for lower backs and legs, Oswestry Disability Index (ODI), and modified MacNab criteria for surgical success, were compared between groups. RESULTS: No statistically significant differences were found in hospitalization time, surgery time, intraoperative hemorrhage, number of intraoperative fluoroscopies, or incision length between the two groups. The lower back and leg VAS scores and ODI exhibited a statistically significant decrease in both groups across all postoperative time intervals. However, the difference between the two groups was not statistically significant. Postoperative nerve root stimulation symptoms were reported in two and three cases in the high-grade migrated group and low-grade migrated group, respectively. One patient in the high-grade migrated group underwent reoperation due to re-herniation at the same segment. There was no significant difference in the rate of excellent-good cases between the two groups, with an overall rate of 94.7%. CONCLUSION: In treating high-grade migrated disc herniation, PEID offers advantages such as reduced trauma, small incision, quicker recovery and satisfactory clinical safety and efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA