Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(15): 7221-7227, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37338434

RESUMEN

Vacancies pose a major challenge in the production of high-quality crystals, particularly at the nanoscale. To address this problem, we report a convenient strategy that involves volumetric lattice reconstruction and dynamic metal complex docking to produce ultrasmall (10 nm) and bright core-shell upconversion nanoparticles (UCNPs). This strategy involves the formation of lanthanide ion-oleic acid complexes during postannealing in solution, which effectively removes vacancies in nanocrystals. The removal of vacancies restricts the diffusion of lanthanide sensitizers and emitters within the core, thus minimizing surface quenching. Our volumetric lattice reconstruction strategy provides fundamental insights into lattice engineering and presents a general strategy for purifying functional nanocrystals for applications in fields such as single-molecule tracking, quantum optics, energy conversion, and others.

2.
Nano Lett ; 23(23): 11368-11375, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38047597

RESUMEN

The design of catalysts has attracted a great deal of attention in the field of electrocatalysis. The accurate design of the catalysts can avoid an unnecessary process that occurs during the blind trial. Based on the interaction between different metal species, a metallic compound supported by the carbon nanotube was designed. Among these compounds, RhFeP2CX (R-RhFeP2CX-CNT) was found to be in a rich-electron environment at the Fermi level (denoted as a flat Fermi surface), beneficial to the hydrogen evolution reaction (HER). R-RhFeP2CX-CNT exhibits a small overpotential of 15 mV at the current density of 10 mA·cm-2 in acidic media. Moreover, the mass activity of R-RhFeP2CX-CNT is 21597 A·g-1, which also demonstrates the advance of the active sites on R-RhFeP2CX-CNT. Therefore, R-RhFeP2CX-CNT can be an alternative catalyst applied in practical production, and the strategies of a flat Fermi surface will be a reliable strategy for catalyst designing.

3.
Angew Chem Int Ed Engl ; 61(16): e202200366, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35118786

RESUMEN

Chlorine evolution reaction has been applied in the production since a century ago. After times of evolution, it has been widely realized by the electrocatalytic process on anode nowadays. However, the anode applied in production contains a large amount of precious metal, increasing the cost. It is thus an opportunity to apply sub-nano catalysts in this field. By regulating the tip effect (TE) of the catalyst, it was discovered that the oxidized sub-nano iridium clusters supported by titanium carbide exhibit much higher efficiency than the single-atom one, which demonstrates the significance of modifying the electronic interaction. Moreover, it exhibits a ≈20 % decrease of the electricity, ≈98 % selectivity towards chlorine evolution reaction, and high durability of over 350 h. Therefore, this cluster catalyst performs great potential in applying in the practical production and the comprehension of the tip effect on different types of catalysts is also pushed to a higher level.

4.
Angew Chem Int Ed Engl ; 60(35): 19085-19091, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34155750

RESUMEN

It is still of great difficulty to develop the non-platinum catalyst with high catalytic efficiency towards hydrogen evolution reaction via the strategies till now. Therefore, it is necessary to develop the new methods of catalyst designing. Here, we put forward the catalyst designed by the electronic metal-support interaction (EMSI), which is demonstrated to be a reliable strategy to find out the high-efficiency catalyst. We carried out the density functional theory calculation first to design the proper EMSI of the catalyst. We applied the model of M1-M2-X (X=C, N, O) during the calculation. Among the catalysts we chose, the EMSI of Rh1TiC, with the active sites of Rh1-Ti2C2, is found to be the most proper one for HER. The electrochemical experiment further demonstrated the feasibility of the EMSI strategy. The single atomic site catalyst of Rh1-TiC exhibits higher catalytic efficiency than that of state-of-art Pt/C. It achieves a small overpotential of 22 mV and 86 mV at the at the current density of 10 mA cm-2 and 100 mA cm-2 in acid media, with a Tafel slope of 25 mV dec-1 and a mass activity of 54403.9 mA cm-2 mgRh -1 (vs. 192.2 mA cm-2 mgPt -1 of Pt/C). Besides, it also shows appealing advantage in energy saving compared with Pt/C (≈20 % electricity consuming decrease at 2 kA m-2 ) Therefore, we believe that the strategy of regulating EMSI can act as a possible way for achieving the high catalytic efficiency on the next step of SACs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA