Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(28): e2214765120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37406097

RESUMEN

The malaria parasite Plasmodium falciparum has a nonphotosynthetic plastid called the apicoplast, which contains its own genome. Regulatory mechanisms for apicoplast gene expression remain poorly understood, despite this organelle being crucial for the parasite life cycle. Here, we identify a nuclear-encoded apicoplast RNA polymerase σ subunit (sigma factor) which, along with the α subunit, appears to mediate apicoplast transcript accumulation. This has a periodicity reminiscent of parasite circadian or developmental control. Expression of the apicoplast subunit gene, apSig, together with apicoplast transcripts, increased in the presence of the blood circadian signaling hormone melatonin. Our data suggest that the host circadian rhythm is integrated with intrinsic parasite cues to coordinate apicoplast genome transcription. This evolutionarily conserved regulatory system might be a future target for malaria treatment.


Asunto(s)
Apicoplastos , Malaria , Parásitos , Animales , Apicoplastos/genética , Apicoplastos/metabolismo , Parásitos/genética , Parásitos/metabolismo , Señales (Psicología) , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malaria/metabolismo , Proteínas Protozoarias/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(34): e2208277119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969755

RESUMEN

Chloroplast protein import is mediated by translocons named TOC and TIC on the outer and inner envelope membranes, respectively. Translocon constituents are conserved among green lineages, including plants and green algae. However, it remains unclear whether Rhodophyta (red algae) share common chloroplast protein import mechanisms with the green lineages. We show that in the rhodophyte Cyanidioschyzon merolae, plastome-encoded Tic20pt localized to the chloroplast envelope and was transiently associated with preproteins during import, suggesting its conserved function as a TIC constituent. Besides plastome-encoded FtsHpt and several chaperones, a class of GTP (guanosine 5'-triphosphate)-binding proteins distinct from the Toc34/159 GTPase family associated transiently with preproteins. This class of proteins resides mainly in the cytosol and shows sequence similarities with Sey1/RHD3, required for endoplasmic reticulum membrane fusion, and with the periplastid-localized import factor PPP1, previously identified in the Apicomplexa and diatoms. These GTP-binding proteins, named plastid targeting factor for protein import 1 (PTF1) to PTF3, may act as plastid targeting factors in Rhodophyta.


Asunto(s)
Proteínas de Cloroplastos , Proteínas de Unión al GTP , Rhodophyta , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al GTP/metabolismo , Transporte de Proteínas , Rhodophyta/metabolismo
3.
Plant Cell Physiol ; 65(1): 120-127, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37856257

RESUMEN

The two-component system (TCS) is a conserved signal transduction module in bacteria. The Hik2-Rre1 system is responsible for transcriptional activation upon high-temperature shift as well as plastoquinone-related redox stress in the cyanobacterium Synechococcus elongatus PCC 7942. As heat-induced de novo protein synthesis was previously shown to be required to quench the heat-activated response, we investigated the underlying mechanism in this study. We found that the heat-inducible transcription activation was alleviated by the overexpression of dnaK2, which is an essential homolog of the highly conserved HSP70 chaperone and whose expression is induced under the control of the Hik2-Rre1 TCS. Phosphorylation of Rre1 correlated with transcription of the regulatory target hspA. The redox stress response was found to be similarly repressed by dnaK2 overexpression. Considered together with the previous information, we propose a negative feedback mechanism of the Hik2-Rre1-dependent stress response that maintains the cellular homeostasis mediated by DnaK2.


Asunto(s)
Proteínas Bacterianas , Synechococcus , Retroalimentación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética , Regulación Bacteriana de la Expresión Génica
4.
J Biol Chem ; 298(12): 102650, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36448836

RESUMEN

To ensure efficient photosynthesis, chloroplast proteins need to be flexibly regulated under fluctuating light conditions. Thiol-based redox regulation plays a key role in reductively activating several chloroplast proteins in a light-dependent manner. The ferredoxin (Fd)/thioredoxin (Trx) pathway has long been recognized as the machinery that transfers reducing power generated by photosynthetic electron transport reactions to redox-sensitive target proteins; however, its biological importance remains unclear, because the complete disruption of the Fd/Trx pathway in plants has been unsuccessful to date. Especially, recent identifications of multiple redox-related factors in chloroplasts, as represented by the NADPH-Trx reductase C, have raised a controversial proposal that other redox pathways work redundantly with the Fd/Trx pathway. To address these issues directly, we used CRISPR/Cas9 gene editing to create Arabidopsis mutant plants in which the activity of the Fd/Trx pathway was completely defective. The mutants generated showed severe growth inhibition. Importantly, these mutants almost entirely lost the ability to reduce several redox-sensitive proteins in chloroplast stroma, including four Calvin-Benson cycle enzymes, NADP-malate dehydrogenase, and Rubisco activase, under light conditions. These striking phenotypes were further accompanied by abnormally developed chloroplasts and a drastic decline in photosynthetic efficiency. These results indicate that the Fd/Trx pathway is indispensable for the light-responsive activation of diverse stromal proteins and photoautotrophic growth of plants. Our data also suggest that the ATP synthase is exceptionally reduced by other pathways in a redundant manner. This study provides an important insight into how the chloroplast redox-regulatory system operates in vivo.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fotosíntesis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Oxidación-Reducción , Tiorredoxinas/metabolismo
5.
Plant Cell Physiol ; 64(12): 1590-1600, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37706547

RESUMEN

Cyanobacteria are promising photosynthetic organisms owing to their ease of genetic manipulation. Among them, Synechococcus elongatus UTEX 2973 exhibits faster growth, higher biomass production efficiency and more robust stress tolerance compared with S. elongatus PCC 7942. This is due to specific genetic differences, including four single-nucleotide polymorphisms (SNPs) in three genes. One of these SNPs alters an amino acid at position 252 of the FoF1 ATP synthase α-subunit from Tyr to Cys (αY252C) in S. elongatus 7942. This change has been shown to significantly affect growth rate and stress tolerance, specifically in S. elongatus. Furthermore, experimental substitutions with several other amino acids have been shown to alter the ATP synthesis rate in the cell. In the present study, we introduced identical amino acid substitutions into Synechocystis sp. PCC 6803 at position 252 to elucidate the amino acid's significance and generality across cyanobacteria. We investigated the resulting impact on growth, intracellular enzyme complex levels, intracellular ATP levels and enzyme activity. The results showed that the αY252C substitution decreased growth rate and high-light tolerance. This indicates that a specific bulkiness of this amino acid's side chain is important for maintaining cell growth. Additionally, a remarkable decrease in the membrane-bound enzyme complex level was observed. However, the αY252C substitution did not affect enzyme activity or intracellular ATP levels. Although the mechanism of growth suppression remains unknown, the amino acid at position 252 is expected to play an important role in enzyme complex formation.


Asunto(s)
Synechococcus , Synechocystis , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Synechococcus/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Fotosíntesis/genética , Adenosina Trifosfato/metabolismo
6.
Analyst ; 148(24): 6241-6247, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37947037

RESUMEN

The formation of photosynthetic microbial biofilms comprising multispecies biomolecules, such as extracellular polymeric substances (EPSs), and microbial cells play pivotal roles in maintaining or stimulating their biological functions. Although there are numerous studies on photosynthetic microbial biofilms, the spatial distribution of EPS components that are vital for microbial biofilm formation, such as exopolysaccharides and proteins, is not well understood. Visualization of photosynthetic microbial biofilms requires label-free methods, because labelling EPSs results in structural changes or aggregation. Raman spectroscopy is useful for label-free visualization of biofilm constituents based on chemical contrast. However, interference resulting from the bright autofluorescence of photosynthetic molecules and the low detection efficiency of Raman scattering make visualization a challenge. Herein, we visualized photosynthetic microbial biofilms in a label-free manner using a super-resolution optical infrared absorption imaging technique, called mid-infrared photothermal (MIP) microscopy. By leveraging the advantages of MIP microscopy, such as its sub-micrometer spatial resolution, autofluorescence-free features, and high detection sensitivity, the distribution of cyanobacteria and their extracellular polysaccharides in the biofilm matrix were successfully visualized. This showed that cyanobacterial cells were aligned along acidic/sulfated polysaccharides in the extracellular environment. Furthermore, spectroscopic analyses elucidated that during formation of biofilms, sulfated polysaccharides initially form linear structures followed by entrapment of cyanobacterial cells. The present study provides the foundation for further studies on the formation, structure, and biological functions of microbial biofilms.


Asunto(s)
Biopelículas , Cianobacterias , Polisacáridos , Microscopía , Imagen Óptica
7.
Plant Cell Physiol ; 63(2): 176-188, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34750635

RESUMEN

The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.


Asunto(s)
Plastoquinona , Synechococcus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Synechococcus/genética , Synechococcus/metabolismo , Temperatura
8.
Nat Chem Biol ; 16(4): 415-422, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042199

RESUMEN

In biotin biosynthesis, the conversion of pimeloyl intermediates to biotin is catalyzed by a universal set of four enzymes: BioF, BioA, BioD and BioB. We found that the gene homologous to bioA, the product of which is involved in the conversion of 8-amino-7-oxononanoate (AON) to 7,8-diaminononanoate (DAN), is missing in the genome of the cyanobacterium Synechocystis sp. PCC 6803. We provide structural and biochemical evidence showing that a novel dehydrogenase, BioU, is involved in biotin biosynthesis and functionally replaces BioA. This enzyme catalyzes three reactions: formation of covalent linkage with AON to yield a BioU-DAN conjugate at the ε-amino group of Lys124 of BioU using NAD(P)H, carboxylation of the conjugate to form BioU-DAN-carbamic acid, and release of DAN-carbamic acid using NAD(P)+. In this biosynthetic pathway, BioU is a suicide enzyme that loses the Lys124 amino group after a single round of reaction.


Asunto(s)
Biotina/biosíntesis , Oxidorreductasas/ultraestructura , Synechocystis/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Biotina/metabolismo , Catálisis , Clonación Molecular , Cianobacterias/genética , Cianobacterias/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Oxidorreductasas/metabolismo , Synechocystis/genética , Transaminasas/metabolismo
9.
Microb Cell Fact ; 21(1): 266, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539761

RESUMEN

BACKGROUND: Genetic modifications in Bacillus subtilis have allowed the conversion of myo-inositol into scyllo-inositol, which is proposed as a therapeutic agent for Alzheimer's disease. This conversion comprises two reactions catalyzed by two distinct inositol dehydrogenases, IolG and IolW. The IolW-mediated reaction requires the intracellular regeneration of NADPH, and there appears to be a limit to the endogenous supply of NADPH, which may be one of the rate-determining factors for the conversion of inositol. The primary mechanism of NADPH regeneration in this bacterium remains unclear. RESULTS: The gdh gene of B. subtilis encodes a sporulation-specific glucose dehydrogenase that can use NADP+ as a cofactor. When gdh was modified to be constitutively expressed, the intracellular NADPH level was elevated, increasing the conversion of inositol. In addition, the bacterial luciferase derived from Photorhabdus luminescens became more luminescent in cells in liquid culture and colonies on culture plates. CONCLUSION: The results indicated that the luminescence of luciferase was representative of intracellular NADPH levels. Luciferase can therefore be employed to screen for mutations in genes involved in NADPH regeneration in B. subtilis, and artificial manipulation to enhance NADPH regeneration can promote the production of substances such as scyllo-inositol.


Asunto(s)
Bacillus subtilis , Glucosa 1-Deshidrogenasa , Glucosa 1-Deshidrogenasa/genética , NADP , Bacillus subtilis/genética , Luminiscencia , Inositol , Luciferasas
10.
Proc Natl Acad Sci U S A ; 116(49): 24900-24906, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31732672

RESUMEN

The biogenesis of the photosynthetic apparatus in developing seedlings requires the assembly of proteins encoded on both nuclear and chloroplast genomes. To coordinate this process there needs to be communication between these organelles, but the retrograde signals by which the chloroplast communicates with the nucleus at this time are still essentially unknown. The Arabidopsis thaliana genomes uncoupled (gun) mutants, that show elevated nuclear gene expression after chloroplast damage, have formed the basis of our understanding of retrograde signaling. Of the 6 reported gun mutations, 5 are in tetrapyrrole biosynthesis proteins and this has led to the development of a model for chloroplast-to-nucleus retrograde signaling in which ferrochelatase 1 (FC1)-dependent heme synthesis generates a positive signal promoting expression of photosynthesis-related genes. However, the molecular consequences of the strongest of the gun mutants, gun1, are poorly understood, preventing the development of a unifying hypothesis for chloroplast-to-nucleus signaling. Here, we show that GUN1 directly binds to heme and other porphyrins, reduces flux through the tetrapyrrole biosynthesis pathway to limit heme and protochlorophyllide synthesis, and can increase the chelatase activity of FC1. These results raise the possibility that the signaling role of GUN1 may be manifested through changes in tetrapyrrole metabolism, supporting a role for tetrapyrroles as mediators of a single biogenic chloroplast-to-nucleus retrograde signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Fotosíntesis/fisiología , Tetrapirroles/biosíntesis , Proteínas de Arabidopsis/genética , Vías Biosintéticas/genética , Vías Biosintéticas/fisiología , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Proteínas de Unión al ADN/genética , Ferroquelatasa , Regulación de la Expresión Génica de las Plantas , Hemo/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Mutación , Transducción de Señal/fisiología
11.
Plant Cell Physiol ; 62(6): 926-941, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33836072

RESUMEN

Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.


Asunto(s)
Genoma de Planta , Rhodophyta/citología , Rhodophyta/fisiología , Ciclo Celular , Replicación del ADN , Epigénesis Genética , Genoma del Cloroplasto , Mutación , Fotosíntesis
12.
Plant J ; 97(3): 485-499, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30351485

RESUMEN

The target of rapamycin (TOR) signaling pathway is involved in starch accumulation in various eukaryotic organisms; however, the molecular mechanism behind this phenomenon in eukaryotes has not been elucidated. We report a regulatory mechanism of starch accumulation by TOR in the unicellular red alga, Cyanidioschyzon merolae. The starch content in C. merolae after TOR-inactivation by rapamycin, a TOR-specific inhibitor, was increased by approximately 10-fold in comparison with its drug vehicle, dimethyl sulfoxide. However, our previous transcriptome analysis showed that the expression level of genes related to carbohydrate metabolism was unaffected by rapamycin, indicating that starch accumulation is regulated at post-transcriptional levels. In this study, we performed a phosphoproteome analysis using liquid chromatography-tandem mass spectrometry to investigate potential post-transcriptional modifications, and identified 52 proteins as candidate TOR substrates. Among the possible substrates, we focused on the function of CmGLG1, because its phosphorylation at the Ser613 residue was decreased after rapamycin treatment, and overexpression of CmGLG1 resulted in a 4.7-fold higher starch content. CmGLG1 is similar to the priming protein, glycogenin, which is required for the initiation of starch/glycogen synthesis, and a budding yeast complementation assay demonstrated that CmGLG1 can functionally substitute for glycogenin. We found an approximately 60% reduction in the starch content in a phospho-mimicking CmGLG1 overexpression strain, in which Ser613 was substituted with aspartic acid, in comparison with the wild-type CmGLG1 overexpression cells. Our results indicate that TOR modulates starch accumulation by changing the phosphorylation status of the CmGLG1 Ser613 residue in C. merolae.


Asunto(s)
Glucosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Rhodophyta/genética , Transducción de Señal , Almidón/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Glucosiltransferasas/genética , Glicoproteínas/genética , Fosforilación , Rhodophyta/fisiología , Serina-Treonina Quinasas TOR/genética
13.
Plant Cell Physiol ; 61(4): 675-684, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32105317

RESUMEN

Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays an important role in the regulation of cell growth and the sensing of nutrient and energy status in eukaryotes. In yeasts and mammals, the roles of TOR have been very well described and various functions of TOR signaling in plant lineages have also been revealed over the past 20 years. In the case of microalgae, the functions of TOR have been primarily studied in the model green alga Chlamydomonas reinhardtii and were summarized in an earlier single review article. However, the recent development of tools for the functional analysis of TOR has helped to reveal the involvement of TOR in various functions, including autophagy, transcription, translation, accumulation of energy storage molecules, etc., in microalgae. In the present review, we discuss recent novel findings relating to TOR signaling and its roles in microalgae along with relevant information on land plants and also provide details of topics that must be addressed in future studies to reveal how TOR regulates various physiological functions in microalgae.


Asunto(s)
Biomasa , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Sirolimus/farmacología , Autofagia/efectos de los fármacos , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , Microalgas/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
14.
Plant J ; 94(2): 327-339, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29441718

RESUMEN

Chloroplasts are plant organelles that carry out oxygenic photosynthesis. Chloroplast biogenesis depends upon chloroplast ribosomes and their translational activity. However, regulation of chloroplast ribosome biogenesis remains an important unanswered question. In this study, we found that inhibition of target of rapamycin (TOR), a general eukaryotic checkpoint kinase, results in a decline in chloroplast ribosomal RNA (rRNA) transcription in the unicellular red alga, Cyanidioschyzon merolae. Upon TOR inhibition, transcriptomics and other analyses revealed increased expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) gene (CmRSH4b), which encodes a homolog of the guanosine 3'-diphosphate 5'-diphosphate (ppGpp) synthetases that modulate rRNA synthesis in bacteria. Using an Escherichia coli mutant lacking ppGpp, CmRSH4b was demonstrated to have ppGpp synthetase activity. Expression analysis of a green fluorescent protein-fused protein indicated that CmRSH4b localizes to the chloroplast, and overexpression of the CmRSH4b gene resulted in a decrease of chloroplast rRNA synthesis concomitant with growth inhibition and reduction of chloroplast size. Biochemical analyses using C. merolae cell lysates or purified recombinant proteins revealed that ppGpp inhibits bacteria-type RNA polymerase-dependent chloroplast rRNA synthesis as well as a chloroplast guanylate kinase. These results suggest that CmRSH4b-dependent ppGpp synthesis in chloroplasts is an important regulator of chloroplast rRNA transcription. Nuclear and mitochondrial rRNA transcription were both reduced by TOR inhibition, suggesting that the biogeneses of the three independent ribosome systems are interconnected by TOR in plant cells.


Asunto(s)
Proteínas Algáceas/metabolismo , Cloroplastos/metabolismo , Ligasas/genética , ARN del Cloroplasto/metabolismo , ARN Ribosómico/metabolismo , Rhodophyta/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Algáceas/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ligasas/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(19): 5299-304, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27122315

RESUMEN

The biflagellate green alga Chlamydomonas reinhardtii exhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant, lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type. This mutant has a single amino acid substitution in phytoene synthase, an enzyme that functions in the carotenoid-biosynthesis pathway. The eyespot contains large amounts of carotenoids and is crucial for phototaxis. Most lts1-211 cells have no detectable eyespot and reduced carotenoid levels. Interestingly, the reversed phototactic-sign phenotype of lts1-211 is shared by other eyespot-less mutants. In addition, we directly showed that the cell body acts as a convex lens. The lens effect of the cell body condenses the light coming from the rear onto the photoreceptor in the absence of carotenoid layers, which can account for the reversed-phototactic-sign phenotype of the mutants. These results suggest that light-shielding property of the eyespot is essential for determination of phototactic sign.


Asunto(s)
Carotenoides/fisiología , Movimiento Celular/fisiología , Chlamydomonas reinhardtii/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Fototaxis/fisiología , Animales , Carotenoides/efectos de la radiación , Movimiento Celular/efectos de la radiación , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/efectos de la radiación , Luz , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Pigmentación/fisiología , Pigmentación/efectos de la radiación , Dosis de Radiación
16.
Mol Microbiol ; 104(2): 260-277, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28106321

RESUMEN

Bacteria and other organisms, including cyanobacteria, employ two-component signal transducing modules comprising histidine kinases and response regulators to acclimate to changing environments. While the number and composition of these modules differ among cyanobacteria, two response regulators that contain DNA binding domains, RpaB and Rre1, are conserved in all sequenced cyanobacterial genomes and are essential for viability. Although RpaB negatively or positively regulates high light and other stress-responsive gene expression, little is known about the function of Rre1. Here, they investigated the direct regulatory targets of Rre1 in the cyanobacterium Synechococcus elongatus PCC 7942. Chromatin immunoprecipitation and high-density tiling array analysis were used to map Rre1 binding sites. The sites included promoter regions for chaperone genes such as dnaK2, groESL-1, groEL-2, hspA and htpG, as well as the group 2 sigma factor gene rpoD2. In vivo and in vitro analyses revealed that Rre1 phosphorylation level, DNA binding activity and adjacent gene transcription increased in response to heat stress. These responses were much diminished in a knock-out mutant of Hik34, a previously identified heat shock regulator. Based on our results, we propose Hik34-Rre1 is the heat shock-responsive signaling module that positively regulates major chaperone and other genes in cyanobacteria.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Synechococcus/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Cianobacterias/genética , Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Histidina Quinasa/metabolismo , Calor , Luz , Chaperonas Moleculares/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Factor sigma/metabolismo , Transducción de Señal , Synechococcus/genética
17.
Plant Cell Physiol ; 59(11): 2308-2316, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30099537

RESUMEN

The nuclear genome of the unicellular red alga Cyanidioschyzon merolae can be modified by homologous recombination with exogenously introduced DNA. However, it is presently difficult to modify multiple chromosome loci because of the limited number of available positive selectable markers. In this study, we constructed a modified URA5.3 gene (URA5.3T), which can be repeatedly used for nuclear genome transformation, as well as two plasmid vectors for 3× FLAG- or 3× Myc-epitope tagging of nuclear-encoded proteins using URA5.3T. In the URA5.3T marker, the promoter region and open reading frame were located between directly repeated URA5.3 terminator sequences, and the URA5.3 gene can be eliminated by 5-fluoroorotic acid selection through homologous recombination. To demonstrate the utility of the constructed system, a 3× FLAG-tag and 3× Myc-tag were introduced at the C-termini of two of the six Rab proteins in C. merolae, CmRab18 and CmRab7, respectively, and the differential expression levels were successfully monitored by immunoblot analysis using these epitope tags. The URA5.3T marker's introduction and elimination cycle can be repeated. Thus, we have constructed a marker recycling system for C. merolae nuclear transformation. A novel procedure to obtain a high plating efficiency of C. merolae cells on solid gellan gum plates is also presented.


Asunto(s)
Núcleo Celular/genética , Epítopos/genética , Genes de Plantas/genética , Rhodophyta/genética , Marcadores Genéticos/genética , Immunoblotting , Sistemas de Lectura Abierta/genética , Plastidios/genética , Regiones Promotoras Genéticas/genética , Rhodophyta/metabolismo
18.
Plant Cell Physiol ; 57(5): 953-60, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27044672

RESUMEN

ABA is a phytohormone that is synthesized in response to abiotic stresses and other environmental changes, inducing various physiological responses. While ABA has been found in unicellular photosynthetic organisms, such as cyanobacteria and eukaryotic algae, its function in these organisms is poorly understood. Here, we found that ABA accumulated in the unicellular red alga Cyanidioschyzon merolae under conditions of salt stress and that the cell cycle G1/S transition was inhibited when ABA was added to the culture medium. A gene encoding heme-scavenging tryptophan-rich sensory protein-related protein (CmTSPO; CMS231C) was positively regulated by ABA, as in Arabidopsis, and CmTSPO bound heme in vitro. The intracellular content of total heme was increased by addition of ABA, but unfettered heme decreased, presumably due to scavenging by CmTSPO. The inhibition of DNA replication by ABA was negated by addition of heme to the culture medium. Thus, we propose a regulatory role for ABA and heme in algal cell cycle initiation. Finally, we found that a C. merolae mutant that is defective in ABA production was more susceptible to salt stress, indicating the importance of ABA to stress resistance in red algae.


Asunto(s)
Ácido Abscísico/metabolismo , Ciclo Celular , Homeostasis , Fotosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Rhodophyta/fisiología , Replicación del ADN , Hemo/metabolismo , Rhodophyta/genética
19.
Microbiology (Reading) ; 162(9): 1698-1707, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27435271

RESUMEN

YbaO is an uncharacterized AsnC-family transcription factor of Escherichia coli. In both Salmonella enterica and Pantoea ananatis, YbaO homologues were identified to regulate the adjacent gene encoding cysteine desulfhydrase for detoxification of cysteine. Using the genomic SELEX (systematic evolution of ligands by exponential enrichment) screening system, we identified the yhaOM operon, located far from the ybaO gene on the E. coli genome, as a single regulatory target of YbaO. In both gel shift assay in vitro and reporter and Northern blot assays in vivo, YbaO was found to regulate the yhaOM promoter. The growth of mutants lacking either ybaO or its targets yhaOM was delayed in the presence of cysteine, indicating involvement of these genes in cysteine detoxification. In the major pathway of cysteine degradation, hydrogen sulfide is produced in wild-type E. coli, but its production was not observed in each of the ybaO, yhaO and yhaM mutants. The yhaOM promoter was activated in the presence of cysteine, implying the role of cysteine in activation of YbaO. Taken together, we propose that YbaO is the cysteine-sensing transcriptional activator of the yhaOM operon, which is involved in the detoxification of cysteine. We then propose the naming of ybaO as decR (regulator of detoxification of cysteine).


Asunto(s)
Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Operón , Regiones Promotoras Genéticas , Factores de Transcripción/genética
20.
Appl Environ Microbiol ; 82(19): 5960-8, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27474708

RESUMEN

UNLABELLED: Regulation of central carbon metabolism has long been an important research subject in every organism. While the dynamics of metabolic flows during changes in available carbon sources have been estimated based on changes in metabolism-related gene expression, as well as on changes in the metabolome, the flux change itself has scarcely been measured because of technical difficulty, which has made conclusions elusive in many cases. Here, we used a monitoring system employing Vibrio fischeri luciferase to probe the intracellular metabolic condition in Escherichia coli Using a batch culture provided with a limited amount of glucose, we performed a time course analysis, where the predominant carbon source shifts from glucose to acetate, and identified a series of sequential peaks in the luciferase activity (peaks 1 to 4). Two major peaks, peaks 1 and 3, were considered to correspond to the glucose and acetate consuming phases, respectively, based on the glucose, acetate, and dissolved oxygen concentrations in the medium. The pattern of these peaks was changed by the addition of a different carbon source or by an increasing concentration of glucose, which was consistent with the present model. Genetically, mutations involved in glycolysis or the tricarboxylic acid (TCA) cycle/gluconeogenesis specifically affected peak 1 or peak 3, respectively, as expected from the corresponding metabolic phase. Intriguingly, mutants for the acetate excretion pathway showed a phenotype of extended peak 2 and delayed transition to the TCA cycle/gluconeogenesis phase, which suggests that peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. IMPORTANCE: Intracellular metabolic flows dynamically change during shifts in available carbon sources. However, because of technical difficulty, the flux change has scarcely been measured in living cells. Here, we used a Vibrio fischeri luciferase monitoring system to probe the intracellular metabolic condition in Escherichia coli Using a limited amount of glucose batch culture, a series of sequential peaks (peaks 1 to 4) in the luciferase activity was observed. Changes in the pattern of these peaks by the addition of extra carbon sources and in mutant strains involved in glycolysis or the TCA cycle/gluconeogenesis gene assigned the metabolic phase corresponding to peak 1 as the glycolysis phase and peak 3 as the TCA cycle/gluconeogenesis phase. Intriguingly, the acetate excretion pathway engaged in peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells.


Asunto(s)
Aliivibrio fischeri/fisiología , Carbono/metabolismo , Escherichia coli/metabolismo , Luciferasas de la Bacteria/metabolismo , Escherichia coli/genética , Glucosa/metabolismo , Luciferasas de la Bacteria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA