Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(11): 1875-1887.e8, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35523182

RESUMEN

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
2.
J Infect Dis ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38437622

RESUMEN

Patients with B-cell lymphomas have altered cellular components of vaccine responses due to malignancy and therapy, and the optimal timing of vaccination relative to therapy remains unknown. SARS-CoV-2 vaccines created an opportunity for new insights in vaccine timing because patients were challenged with a novel antigen across multiple phases of treatment. We studied serologic mRNA vaccine response in retrospective and prospective cohorts with lymphoma and CLL, paired with clinical and research immune parameters. Reduced serologic response was observed more frequently during active therapies, but non-response was also common within observation and post-treatment groups. Total IgA and IgM correlated with successful vaccine response. In individuals treated with CART-19, non-response was associated with reduced B and T follicular helper cells. Predictors of vaccine response varied by disease and therapeutic group, and therefore further studies of immune health during and after cancer therapies are needed to allow individualized vaccine timing.

3.
Mol Psychiatry ; 27(3): 1373-1383, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35091668

RESUMEN

Schizophrenia is a severe, complex mental disorder characterized by a combination of positive symptoms, negative symptoms, and impaired cognitive function. Schizophrenia is highly heritable (~80%) with multifactorial etiology and complex polygenic genetic architecture. Despite the large number of genetic variants associated with schizophrenia, few causal variants have been established. Gaining insight into the mechanistic influences of these genetic variants may facilitate our ability to apply these findings to prevention and treatment. Though there have been more than 300 studies of gene expression in schizophrenia over the past 15 years, none of the studies have yielded consistent evidence for specific genes that contribute to schizophrenia risk. The aim of this work is to conduct a systematic review and synthesis of case-control studies of genome-wide gene expression in schizophrenia. Comprehensive literature searches were completed in PubMed, EmBase, and Web of Science, and after a systematic review of the studies, data were extracted from those that met the following inclusion criteria: human case-control studies comparing the genome-wide transcriptome of individuals diagnosed with schizophrenia to healthy controls published between January 1, 2000 and June 30, 2020 in the English language. Genes differentially expressed in cases were extracted from these studies, and overlapping genes were compared to previous research findings from the genome-wide association, structural variation, and tissue-expression studies. The transcriptome-wide analysis identified different genes than those previously reported in genome-wide association, exome sequencing, and structural variation studies of schizophrenia. Only one gene, GBP2, was replicated in five studies. Previous work has shown that this gene may play a role in immune function in the etiology of schizophrenia, which in turn could have implications for risk profiling, prevention, and treatment. This review highlights the methodological inconsistencies that impede valid meta-analyses and synthesis across studies. Standardization of the use of covariates, gene nomenclature, and methods for reporting results could enhance our understanding of the potential mechanisms through which genes exert their influence on the etiology of schizophrenia. Although these results are promising, collaborative efforts with harmonization of methodology will facilitate the identification of the role of genes underlying schizophrenia.


Asunto(s)
Esquizofrenia , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial , Esquizofrenia/genética , Secuenciación del Exoma
4.
Heliyon ; 8(5): e09379, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35592661

RESUMEN

While studies have shown an increase in pathogenicity in several microbes during spaceflight and after exposure to simulated microgravity, the mechanisms underlying these changes in phenotype are not understood across different pathogens, particularly in opportunistic pathogens. This study evaluates the mechanism for increased virulence of the opportunistic gram-negative bacterium, Serratia marcescens, in simulated microgravity. Low-shear modeled microgravity (LSMMG) is used in ground-based studies to simulate the effects of microgravity as experienced in spaceflight. Our previous findings showed that there was a significant increase in mortality rates of the Drosophila melanogaster host when infected with either spaceflight or LSMMG treated S. marcescens. Here, we report that LSMMG increases asparagine uptake and synthesis in S. marcescens and that the increased host lethality induced by LSMMG bacteria grown in rich media can be recapitulated in minimal media by adding only aspartate and glutamine, the substrates of asparagine biosynthesis. Interestingly, increased bacterial growth rate alone is not sufficient to contribute to maximal host lethality, since the addition of aspartate to minimal media caused an LSMMG-specific increase in bacterial growth rate that is comparable to that induced by the combination of aspartate and glutamine, but this increase in growth does not cause an equivalent rate of host mortality. However, the addition of both aspartate and glutamine cause both an increase in host mortality and an overexpression of asparagine pathway genes in a LSMMG-dependent manner. We also report that L-asparaginase-mediated breakdown of asparagine is an effective countermeasure for the increased host mortality caused by LSMMG-treated bacteria. This investigation underscores the importance of the asparagine utilization pathway by helping uncover molecular mechanisms that underlie increased mortality rates of a model host infected with microgravity-treated S. marcescens and provides a potential mitigation strategy.

5.
bioRxiv ; 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35233575

RESUMEN

Despite a clear role in protective immunity, the durability and quality of antibody and memory B cell responses induced by mRNA vaccination, particularly by a 3 rd dose of vaccine, remains unclear. Here, we examined antibody and memory B cell responses in a cohort of individuals sampled longitudinally for ∼9-10 months after the primary 2-dose mRNA vaccine series, as well as for ∼3 months after a 3 rd mRNA vaccine dose. Notably, antibody decay slowed significantly between 6- and 9-months post-primary vaccination, essentially stabilizing at the time of the 3 rd dose. Antibody quality also continued to improve for at least 9 months after primary 2-dose vaccination. Spike- and RBD-specific memory B cells were stable through 9 months post-vaccination with no evidence of decline over time, and ∼40-50% of RBD-specific memory B cells were capable of simultaneously recognizing the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells induced by the first 2 doses of mRNA vaccine were boosted significantly by a 3rd dose and the magnitude of this boosting was similar to memory B cells specific for other variants. Pre-3 rd dose memory B cell frequencies correlated with the increase in neutralizing antibody titers after the 3 rd dose. In contrast, pre-3 rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit reactivation of immunological memory and constrain further antibody boosting by mRNA vaccines. These data provide a deeper understanding of how the quantity and quality of antibody and memory B cell responses change over time and number of antigen exposures. These data also provide insight into potential immune dynamics following recall responses to additional vaccine doses or post-vaccination infections.

6.
bioRxiv ; 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34462751

RESUMEN

SARS-CoV-2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of declining antibody levels have raised uncertainty about the durability of immune memory following vaccination. In this study, we longitudinally profiled both antibody and cellular immune responses in SARS-CoV-2 naïve and recovered individuals from pre-vaccine baseline to 6 months post-mRNA vaccination. Antibody and neutralizing titers decayed from peak levels but remained detectable in all subjects at 6 months post-vaccination. Functional memory B cell responses, including those specific for the receptor binding domain (RBD) of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants, were also efficiently generated by mRNA vaccination and continued to increase in frequency between 3 and 6 months post-vaccination. Notably, most memory B cells induced by mRNA vaccines were capable of cross-binding variants of concern, and B cell receptor sequencing revealed significantly more hypermutation in these RBD variant-binding clones compared to clones that exclusively bound wild-type RBD. Moreover, the percent of variant cross-binding memory B cells was higher in vaccinees than individuals who recovered from mild COVID-19. mRNA vaccination also generated antigen-specific CD8+ T cells and durable memory CD4+ T cells in most individuals, with early CD4+ T cell responses correlating with humoral immunity at later timepoints. These findings demonstrate robust, multi-component humoral and cellular immune memory to SARS-CoV-2 and current variants of concern for at least 6 months after mRNA vaccination. Finally, we observed that boosting of pre-existing immunity with mRNA vaccination in SARS-CoV-2 recovered individuals primarily increased antibody responses in the short-term without significantly altering antibody decay rates or long-term B and T cell memory. Together, this study provides insights into the generation and evolution of vaccine-induced immunity to SARS-CoV-2, including variants of concern, and has implications for future booster strategies.

7.
Science ; 374(6572): abm0829, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34648302

RESUMEN

The durability of immune memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccination remains unclear. In this study, we longitudinally profiled vaccine responses in SARS-CoV-2­naïve and ­recovered individuals for 6 months after vaccination. Antibodies declined from peak levels but remained detectable in most subjects at 6 months. By contrast, mRNA vaccines generated functional memory B cells that increased from 3 to 6 months postvaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity. Recall responses to vaccination in individuals with preexisting immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and its variants for at least 6 months after mRNA vaccination.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Memoria Inmunológica , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas de ARNm/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA