RESUMEN
DNA replication ensures the accurate transmission of genetic information during the cell cycle. Histone variant H2A.Z is crucial for early replication origins licensing and activation in which SUV420H1 preferentially recognizes H2A.Z-nucleosome and deposits H4 lysine 20 dimethylation (H4K20me2) on replication origins. Here, we report the cryo-EM structures of SUV420H1 bound to H2A.Z-nucleosome or H2A-nucleosome and demonstrate that SUV420H1 directly interacts with H4 N-terminal tail, the DNA, and the acidic patch in the nucleosome. The H4 (1-24) forms a lasso-shaped structure that stabilizes the SUV420H1-nucleosome complex and precisely projects the H4K20 residue into the SUV420H1 catalytic center. In vitro and in vivo analyses reveal a crucial role of the SUV420H1 KR loop (residues 214-223), which lies close to the H2A.Z-specific residues D97/S98, in H2A.Z-nucleosome preferential recognition. Together, our findings elucidate how SUV420H1 recognizes nucleosomes to ensure site-specific H4K20me2 modification and provide insights into how SUV420H1 preferentially recognizes H2A.Z nucleosome.
Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , Nucleosomas/genética , Metilación , ADN/metabolismo , Replicación del ADNRESUMEN
This paper explores the influence of the mixing ratio of ammoniated straw to biogas residue on the stability and methane yield of dry anaerobic digestion and analyzes the structure of the microbial community with digestion time. Five reactors containing ammoniated straw and swine manure biogas residue at ratios of 5:1, 4:2, 3:3, 2:4 and 1:5 (total solids) were constructed, and neither total ammonia nitrogen nor free ammonia nitrogen was inhibited. Three reactors produced gas successfully. The reactor with a ratio of 3:3 (R3-3) yielded the best methane production, with a cumulative methane production of 115.13 mL/(g·VSadded). Analysis of the R3-3 microbial community showed that bacteria were dominant species. Archaea, mainly Methanosarcina, played an important role in anaerobic digestion and methane production. Methanobacterium, with high acid tolerance, was positively related to total volatile fatty acids (TVFA), playing a key role in preventing the acidification of the anaerobic digestion system.