Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Haematologica ; 109(9): 2833-2845, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38572553

RESUMEN

Resistance to glucocorticoids (GC), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-offunction experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GC-resistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GC against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.


Asunto(s)
Resistencia a Antineoplásicos , Glucocorticoides , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Tetraspanina 29 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Resistencia a Antineoplásicos/genética , Niño , Animales , Ratones , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Línea Celular Tumoral , Masculino , Femenino , Preescolar , Dexametasona/farmacología
2.
Gut ; 72(4): 710-721, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805487

RESUMEN

OBJECTIVE: Haematogenous dissemination is a prevalent route of colorectal cancer (CRC) metastasis. However, as the gatekeeper of vessels, the role of tumour pericytes (TPCs) in haematogenous metastasis remains largely unknown. Here, we aimed to investigate the heterogeneity of TPCs and their effects on CRC metastasis. DESIGN: TPCs were isolated from patients with CRC with or without liver metastases and analysed by single-cell RNA sequencing (scRNA-seq). Clinical CRC specimens were collected to analyse the association between the molecular profiling of TPCs and CRC metastasis. RNA-sequencing, chromatin immunoprecipitation-sequencing and bisulfite-sequencing were performed to investigate the TCF21-regulated genes and mechanisms underlying integrin α5 on TCF21 DNA hypermethylation. Pericyte-conditional Tcf21-knockout mice were constructed to investigate the effects of TCF21 in TPCs on CRC metastasis. Masson staining, atomic force microscopy, second-harmonic generation and two-photon fluorescence microscopy were employed to observe perivascular extracellular matrix (ECM) remodelling. RESULTS: Thirteen TPC subpopulations were identified by scRNA-seq. A novel subset of TCF21high TPCs, termed 'matrix-pericytes', was associated with liver metastasis in patients with CRC. TCF21 in TPCs increased perivascular ECM stiffness, collagen rearrangement and basement membrane degradation, establishing a perivascular metastatic microenvironment to instigate colorectal cancer liver metastasis (CRCLM). Tcf21 depletion in TPCs mitigated perivascular ECM remodelling and CRCLM, whereas the coinjection of TCF21high TPCs and CRC cells markedly promoted CRCLM. Mechanistically, loss of integrin α5 inhibited the FAK/PI3K/AKT/DNMT1 axis to impair TCF21 DNA hypermethylation in TCF21high TPCs. CONCLUSION: This study uncovers a previously unidentified role of TPCs in haematogenous metastasis and provides a potential diagnostic marker and therapeutic target for CRC metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/patología , ADN , Regulación Neoplásica de la Expresión Génica , Integrina alfa5/genética , Integrina alfa5/metabolismo , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia , Pericitos/metabolismo , Pericitos/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Microambiente Tumoral
3.
Mol Ther ; 30(9): 3017-3033, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35791881

RESUMEN

Clopidogrel, a P2Y12 inhibitor, is a novel anti-fibrosis agent for chronic kidney disease (CKD), but its mechanisms remain unclear, which we investigated by silencing P2Y12 or treating unilateral ureteral obstruction (UUO) in LysM-Cre/Rosa Tomato mice with clopidogrel in vivo and in vitro. We found that P2Y12 was significantly increased and correlated with progressive renal fibrosis in CKD patients and UUO mice. Phenotypically, up to 82% of P2Y12-expressing cells within the fibrosing kidney were of macrophage origin, identified by co-expressing CD68/F4/80 antigens or a macrophage-lineage-tracing marker Tomato. Unexpectedly, more than 90% of P2Y12-expressing macrophages were undergoing macrophage-to-myofibroblast transition (MMT) by co-expressing alpha smooth muscle actin (α-SMA), which was also confirmed by single-cell RNA sequencing. Functionally, clopidogrel improved the decline rate of the estimated glomerular filtration rate (eGFR) in patients with CKD and significantly inhibited renal fibrosis in UUO mice. Mechanistically, P2Y12 expression was induced by transforming growth factor ß1 (TGF-ß1) and promoted MMT via the Smad3-dependent mechanism. Thus, silencing or pharmacological inhibition of P2Y12 was capable of inhibiting TGF-ß/Smad3-mediated MMT and progressive renal fibrosis in vivo and in vitro. In conclusion, P2Y12 is highly expressed by macrophages in fibrosing kidneys and mediates renal fibrosis by promoting MMT via TGF-ß/Smad3 signaling. Thus, P2Y12 inhibitor maybe a novel and effective anti-fibrosis agent for CKD.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Clopidogrel/metabolismo , Clopidogrel/farmacología , Clopidogrel/uso terapéutico , Fibrosis , Riñón , Enfermedades Renales/etiología , Enfermedades Renales/genética , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/genética
4.
Proc Natl Acad Sci U S A ; 117(34): 20741-20752, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32788346

RESUMEN

Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage-myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-ß1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-ß1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.


Asunto(s)
Proteína smad3/metabolismo , Factor de Transcripción Brn-3A/genética , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Femenino , Fibrosis/fisiopatología , Redes Reguladoras de Genes , Humanos , Inflamación/patología , Riñón/patología , Enfermedades Renales/genética , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Transducción de Señal/genética , Factor de Transcripción Brn-3A/metabolismo , Factor de Transcripción Brn-3A/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Sistema Urinario/metabolismo
5.
Genomics ; 114(3): 110379, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35526740

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. It has been brought to our attention that the authors of the article "Parallel bimodal single-cell sequencing of transcriptome and methylome provides molecular and translational insights on oocyte maturation and maternal aging" cannot agree on who should be listed as an author of the article. Further inquiry by the journal revealed that the authorship was also changed at the revision stages of the article without notifying the handling Editor, which is contrary to the journal policy on changes to authorship. The journal considers this unacceptable practice, and the Editor-in-Chief decided to retract the article.

6.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068907

RESUMEN

Drug resistance remains one of the important clinical challenges, making cancer one of the leading causes of death worldwide [...].


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico
7.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511155

RESUMEN

Transforming growth factor-ß (TGF-ß)/Smad3 signaling has been shown to play important roles in fibrotic and inflammatory diseases. However, the role of Smad3 in dyslipidemia and non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes remains unclear, and whether targeting Smad3 has a therapeutic effect on these metabolic abnormalities remains unexplored. These topics were investigated in this study in Smad3 knockout (KO)-db/db mice and by treating db/db mice with a Smad3-specific inhibitor SIS3. Compared to Smad3 wild-type (WT)-db/db mice, Smad3 KO-db/db mice were protected against dyslipidemia and NAFLD. Similarly, treatment of db/db mice with SIS3 at week 4 before the onset of type 2 diabetes until week 12 was capable of lowering blood glucose levels and improving diabetic dyslipidemia and NAFLD. In addition, using RNA-sequencing, the potential Smad3-target genes related to lipid metabolism was identified in the liver tissues of Smad3 KO/WT mice, and the regulatory mechanisms were investigated. Mechanistically, we uncovered that Smad3 targeted peroxisome proliferator-activated receptor delta (PPARδ) to induce dyslipidemia and NAFLD in db/db mice, which was improved by genetically deleting and pharmacologically inhibiting Smad3.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , PPAR delta , Proteína smad3 , Animales , Ratones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR delta/metabolismo , Proteína smad3/metabolismo
8.
Soc Work Health Care ; 62(8-9): 263-279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37338823

RESUMEN

Individuals within the Lesbian, Gay, Bisexual, Transgender and Queer (LGBTQ) community who are diagnosed with cancer experience inequitable treatment in healthcare systems worldwide, resulting in dissatisfaction, communication challenges with healthcare providers, and a deep sense of disappointment. Stigma, discrimination, and perceived homophobia further heighten the risk of psychological and attitudinal disorders, including depression and suicidal tendencies, among LGBTQ cancer patients. To comprehensively assess the discrimination faced by LGBTQ cancer patients and gain deeper insights into their needs and experiences, we conducted a systematic review following PRISMA guidelines. We searched for relevant articles using specific keywords in reputable databases such as PubMed, Google Scholar, and PsycINFO. We rigorously evaluated article quality using the CASP (Critical Appraisal Skills Programme) checklist. From a total of 75 eligible studies, we carefully selected 14 studies, specifically examining LGBTQ cancer patients who were currently undergoing or had previously undergone cancer treatment. The studies revealed various factors, including unmet needs related to anxiety and depression, instances of discrimination, disparities in care, and inadequate support systems. A majority of patients expressed dissatisfaction with their cancer care and continued to encounter discrimination and disparities throughout their treatment journeys. Consequently, this led to heightened levels of anxiety, stress, depression, and negative perceptions of healthcare providers. Based on these findings, we recommend providing specialized training to social workers and healthcare providers. This training will equip them with the necessary skills and knowledge to deliver culturally sensitive care tailored to the unique needs of LGBTQ cancer patients. By addressing discrimination, reducing disparities, and fostering an inclusive environment, healthcare professionals can strive to ensure that LGBTQ cancer patients receive the care they deserve.


Asunto(s)
Neoplasias , Minorías Sexuales y de Género , Personas Transgénero , Femenino , Humanos , Conducta Sexual/psicología , Identidad de Género , Estigma Social , Neoplasias/terapia , Neoplasias/psicología
9.
Mol Ther ; 29(1): 365-375, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32956626

RESUMEN

Diabetic nephropathy (DN) is a major cause of end-stage renal disease, but treatment remains ineffective. C-reactive protein (CRP) is pathogenic in DN, which significantly correlated with dipeptidyl peptidase-4 (DPP4) expression in diabetic patients with unknown reason. Here, using our unique CRPtg-db/db mice, we observed human CRP markedly induced renal DPP4 associated with enhanced kidney injury compared with db/db mice. Interestingly, linagliptin, a US Food and Drug Administration (FDA)-approved specific DPP4 inhibitor, effectively blocked this CRP-driven DN in the CRPtg-db/db mice. Mechanistically, CRP evoked DPP4 in cultured renal tubular epithelial cells, where CD32b/nuclear factor κB (NF-κB) signaling markedly enriched p65 binding on the DPP4 promoter region to increase its transcription. Unexpectedly, we further discovered that CRP triggers dimerization of DPP4 with CD32b at protein level, forming a novel DPP4/CD32b/NF-κB signaling circuit for promoting CRP-mediated DN. More importantly, linagliptin effectively blocked the circuit, thereby inhibiting the CRP/CD32b/NF-κB-driven renal inflammation and fibrosis. Thus, DPP4 may represent a precise druggable target for CRP-driven DN.


Asunto(s)
Proteína C-Reactiva/metabolismo , Nefropatías Diabéticas/metabolismo , Dipeptidil Peptidasa 4/metabolismo , FN-kappa B/metabolismo , Receptores de IgG/metabolismo , Transducción de Señal , Animales , Biomarcadores , Diabetes Mellitus Experimental , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Ratones
10.
J Cell Mol Med ; 25(5): 2633-2644, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486848

RESUMEN

Selection of the best quality embryo is the key for a faithful implantation in in vitro fertilization (IVF) practice. However, the process of evaluating numerous images captured by time-lapse imaging (TLI) system is time-consuming and some important features cannot be recognized by naked eyes. Convolutional neural network (CNN) is used in medical imaging yet in IVF. The study aims to apply CNN on day-one human embryo TLI. We first presented CNN algorithm for day-one human embryo segmentation on three distinct features: zona pellucida (ZP), cytoplasm and pronucleus (PN). We tested the CNN performance compared side-by-side with manual labelling by clinical embryologist, then measured the segmented day-one human embryo parameters and compared them with literature reported values. The precisions of segmentation were that cytoplasm over 97%, PN over 84% and ZP around 80%. For the morphometrics data of cytoplasm, ZP and PN, the results were comparable with those reported in literatures, which showed high reproducibility and consistency. The CNN system provides fast and stable analytical outcome to improve work efficiency in IVF setting. To conclude, our CNN system is potential to be applied in practice for day-one human embryo segmentation as a robust tool with high precision, reproducibility and speed.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Fertilización In Vitro , Modelos Biológicos , Redes Neurales de la Computación , Técnicas de Cultivo de Célula , Células Cultivadas , Femenino , Humanos , Embarazo , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA