Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38348636

RESUMEN

Orofacial neuropathic pain is a common symptom induced by orofacial nerve injury caused by a range of trauma or dental and maxillofacial procedures but lacks effective treatment. Circular RNAs (circRNAs) participate in the regulatory processes of neuropathic pain. Nevertheless, the biological roles of circRNAs in orofacial neuropathic pain remain unexplored. In this study, circRNA sequencing and Real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. Notably, a novel circRNA named circ_lrrc49 was identified to be downregulated following chronic constriction injury of the infraorbital nerve (CCI-ION) in mice on day 14. Subsequent RNA Antisense Purification (RAP)-mass spectrometry and RNA immunoprecipitation found a direct interaction between circ_lrrc49 and increased sodium tolerance 1 homolog (Ist1). Western blot (WB) identified decreased expression of Ist1 on day 14 post-CCI-ION. Considering the known relationship between Ist1 and autophagy, LC3-II and p62 were detected to be upregulated, and an accumulation of autophagosomes were observed at the same time point. Besides, the knockdown of circ_lrrc49 by small interfering RNA (siRNA) reduced Ist1 expression, increased LC3-II, p62 levels and autophagosomes amount, and evoked orofacial mechanical hypersensitivity, which could be counteracted by the Ist1 overexpression. Similarly, the knockdown of Ist1 by siRNA also increased LC3-II and p62 levels and evoked orofacial mechanical hypersensitivity without influence on circ_lrrc49. Moreover, autophagy activation by rapamycin alleviated orofacial mechanical hypersensitivity evoked by CCI-ION or circ_lrrc49 knockdown. In conclusion, our data revealed the existence of a circ_lrrc49/Ist1/autophagy signaling axis contributing to the progression of orofacial neuropathic pain. These discoveries reveal the intricate molecular processes that drive orofacial neuropathic pain and identify circ_lrrc49 as a promising target for potential therapeutic interventions.

2.
Environ Res ; 257: 119250, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844031

RESUMEN

Aquatic ecosystems are being increasingly polluted by microplastics (MPs), which calls for an understanding of how MPs affect microbially driven biogenic element cycling in water environments. A 28-day incubation experiment was conducted using freshwater lake water added with three polymer types of MPs (i.e., polyethylene, polypropylene, polystyrene) separately or in combination at a concentration of 1 items/L. The effects of various MPs on microbial communities and functional genes related to carbon, nitrogen, phosphorus, and sulfur cycling were analyzed using metagenomics. Results showed that Sphingomonas and Novosphingobium, which were indicator taxa (genus level) in the polyethylene treatment group, made the largest functional contribution to biogenic element cycling. Following the addition of MPs, the relative abundances of genes related to methane oxidation (e.g., hdrD, frhB, accAB) and denitrification (napABC, nirK, norB) increased. These changes were accompanied by increased relative abundances of genes involved in organic phosphorus mineralization (e.g., phoAD) and sulfate reduction (cysHIJ), as well as decreased relative abundances of genes involved in phosphate transport (phnCDE) and the SOX system. Findings of this study underscore that MPs, especially polyethylene, increase the potential of greenhouse gas emissions (CO2, N2O) and water pollution (PO43-, H2S) in freshwater lakes at the functional gene level.

3.
Plant Cell Environ ; 46(3): 946-961, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36582057

RESUMEN

The lepidopteran crop pest Plutella xylostella causes severe constraints on Brassica cultivation. Here, we report a novel role for RPX1 (resistance to P. xylostella) in resistance to this pest in Arabidopsis thaliana. The rpx1-1 mutant repels P. xylostella larvae, and feeding on the rpx1-1 mutant severely damages the peritrophic matrix structure in the midgut of the larvae, thereby negatively affecting larval growth and pupation. This resistance results from the accumulation of defence compounds, including the homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), due to the upregulation of PENTACYCLIC TRITERPENE SYNTHASE 1 (PEN1), which encodes a key DMNT biosynthetic enzyme. P. xylostella infestation and wounding induce RPX1 protein degradation, which may confer a rapid response to insect infestation. RPX1 inactivation and PEN1 overexpression are not associated with negative trade-offs for plant growth but have much higher seed production than the wild-type in the presence of P. xylostella infestation. This study offers a new strategy for plant molecular breeding against P. xylostella.


Asunto(s)
Arabidopsis , Brassica , Mariposas Nocturnas , Triterpenos , Animales , Arabidopsis/genética , Mariposas Nocturnas/fisiología , Larva/fisiología , Triterpenos/metabolismo , Brassica/metabolismo
4.
Pestic Biochem Physiol ; 195: 105557, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666618

RESUMEN

The diamondback moth (Plutella xylostella) is one of the most destructive lepidopteran pests of cruciferous vegetables. However, DBM has developed resistance to current chemical and biological insecticides used for its control, indicating the necessity for finding new insecticides against it. Bio-insecticides derived from plant extracts are eco-friendly alternatives to synthetic pesticides. The aims of this study were to evaluate the insecticidal activity of Consolida ajacis seed extracts against DBM, the underlying mechanism of the control effect of promising extracts, and the identification of the main insecticidal compounds of these extracts. The results showed that ethyl acetate extract of C. ajacis seed exhibited strong contact toxicity (LC50: 5.05 mg/mL), ingestion toxicity, antifeedant, and oviposition deterrent activities against DBM, among the extracts evaluated. At 72 h, glutathiase, acetylcholinesterase, carboxylesterase, peroxidase, and superoxide dismutase activities were inhibited, but catalase activity was activated. The main compound identified from the extract was ethyl linoleate, which had the most significant insecticidal activity on the diamondback moths. This study's findings provide a better understanding of the insecticidal activity of ethyl acetate extract obtained from C. ajacis and its main component (ethyl linoleate). This will help in the development of new insecticides to control DBM.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Ranunculaceae , Femenino , Animales , Insecticidas/farmacología , Acetilcolinesterasa
5.
Cancer Sci ; 113(8): 2753-2762, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35722967

RESUMEN

Prostate cancer ranks among the most commonly diagnosed malignancies for men and has become a non-negligible threat for public health. Interplay between inflammatory factors and cancer cells renders inflammatory tissue environment as a predisposing condition for cancer development. The Hippo pathway is a conserved signaling pathway across multiple species during evolution that regulates tissue homeostasis and organ development. Nevertheless, whether Hippo pathway regulates cancer-related inflammatory factors remains elusive. Here, we show that high cell density-mediated activation of the Hippo pathway blunts STAT3 activity in prostate cancer cells. Hippo pathway component MST2 kinase phosphorylates STAT3 at T622, which is located in the SH2 domain of STAT3. This phosphorylation blocks the SH2 domain in one STAT3 molecule to bind with the phosphorylated Y705 site in another STAT3 molecule, which further counteracts IL6-induced STAT3 dimerization and activation. Expression of a nonphosphorylatable STAT3 T622A mutant enhances STAT3 activity and IL6 expression at high cell density and promotes tumor growth in a mice xenograft model. Our findings demonstrate that STAT3 is a novel phosphorylation substrate for MST2 and thereby highlight a regulatory cascade underlying the crosstalk between inflammation and the Hippo pathway in prostate cancer cells.


Asunto(s)
Vía de Señalización Hippo , Neoplasias de la Próstata , Animales , Humanos , Interleucina-6/metabolismo , Masculino , Ratones , Fosforilación/fisiología , Neoplasias de la Próstata/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
6.
Arch Insect Biochem Physiol ; 101(1): e21542, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30820994

RESUMEN

Our bioassays reviewed that antennae played crucial roles in the responses of maize weevil (Sitophilus zeamais) to food and sex volatiles. In order to identify the maize weevil odorant-binding protein (OBP) genes, we analyzed its antennal transcriptome. In total, 21,587,928 high-quality clean reads were obtained from RNA-seq, 52,206 unigenes were assembled, and 25,744 unigenes showed significant similarity ( E value < 10 -5 ) to known proteins in the NCBI nonredundant protein database. From those unigenes, we identified 41 candidate OBP proteins, which could be categorized into dimeric OBPs subfamily, minus-C OBPs subfamily, and classical OBPs subfamily. Phylogenic analysis indicated that most maize weevil OBPs were closely related to their orthologues in other beetles of the Superfamily Curculionoidea. We further investigated the expression profiles of those candidate OBP genes by quantitative real-time polymerase chain reaction. Twenty-six of forty-one maize weevil OBP genes were highly expressed in the antennae or other parts of the head. The rest were expressed in the legs, wings, or other tested tissues. The antennal transcriptomic data and candidate OBP genes described here provide a basis for the functional studies of the maize weevil chemical perception, which are potential novel targets for pest control strategies.


Asunto(s)
Antenas de Artrópodos/metabolismo , Perfilación de la Expresión Génica , Receptores Odorantes/genética , Gorgojos/genética , Animales , Expresión Génica , Proteínas de Insectos/genética , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptores Odorantes/metabolismo , Gorgojos/metabolismo
7.
Sensors (Basel) ; 19(10)2019 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-31109126

RESUMEN

Human activity recognition (HAR) has gained lots of attention in recent years due to its high demand in different domains. In this paper, a novel HAR system based on a cascade ensemble learning (CELearning) model is proposed. Each layer of the proposed model is comprised of Extremely Gradient Boosting Trees (XGBoost), Random Forest, Extremely Randomized Trees (ExtraTrees) and Softmax Regression, and the model goes deeper layer by layer. The initial input vectors sampled from smartphone accelerometer and gyroscope sensor are trained separately by four different classifiers in the first layer, and the probability vectors representing different classes to which each sample belongs are obtained. Both the initial input data and the probability vectors are concatenated together and considered as input to the next layer's classifiers, and eventually the final prediction is obtained according to the classifiers of the last layer. This system achieved satisfying classification accuracy on two public datasets of HAR based on smartphone accelerometer and gyroscope sensor. The experimental results show that the proposed approach has gained better classification accuracy for HAR compared to existing state-of-the-art methods, and the training process of the model is simple and efficient.


Asunto(s)
Técnicas Biosensibles/métodos , Actividades Humanas , Monitoreo Fisiológico , Algoritmos , Humanos , Teléfono Inteligente
8.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1374-1379, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31309620

RESUMEN

The ruminal microbiota of 15 dairy buffalo was characterized using high-throughput 16S rRNA gene amplicon sequencing. Results showed that Bacteroidetes was the dominant bacterial phylum in all rumen samples, followed by Firmicutes, Proteobacteria, Tenericutes and Verrucomicrobia. Butyrivibrio was positively correlated with average milk fat yield (R = 0.55; p = 0.03), average milk total solid yield (R = 0.56; p = 0.03) and standard milk yield (R = 0.52; p = 0.05). Acinetobacter were positively correlated with average milk protein yield (R = 0.56; p = 0.03), average milk total solid yield (R = 0.60; p = 0.02) and standard milk yield (R = 0.57; p = 0.03). Acetobacter was positively correlated with acetate (R = 0.63; p = 0.01), propionate content (R = 0.55; p = 0.03), butyrate content (R = 0.61; p = 0.02) and total VFA (R = 0.62; p = 0.01). The phyla Proteobacteria (R = 0.53; p = 0.04) and genus Prevotella (R = 0.52; p = 0.05) were positively correlated with butyrate content. Correlation analysis suggested that increased Butyrivibrio and Acinetobacter residing in the buffalo rumen could improve milk performance.


Asunto(s)
Bacterias/clasificación , Búfalos/fisiología , Lactancia/fisiología , Rumen/microbiología , Animales , Búfalos/microbiología , China , Femenino , Fermentación
9.
Cell Physiol Biochem ; 37(3): 1002-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26393913

RESUMEN

BACKGROUND/AIMS: Circulating long non coding RNAs (lncRNAs) have emerged recently as major players in tumor biology and may be used for cancer diagnosis, prognosis, and as potential therapeutic targets. We explored circulating lncRNA as a predictor for the tumorigenesis of non-small-cell lung cancer (NSCLC). METHODS: In this study, we applied a lncRNA microarray to screen for a potential biomarker for NSCLC, utilizing RT-PCR (ABI 7900HT). A multi-stage validation and risk score formula detection analysis was used. RESULTS: We discovered that three lncRNAs (RP11-397D12.4, AC007403.1, and ERICH1-AS1) were up regulated in NSCLC, compared with cancer-free controls, with the merged area under the curve in the training and validation sets of 0.986 and 0.861. Furthermore, the positive predictive value and negative predictive value of the three merged factors were 0.72 and 0.87. We confirmed stable detection of the three lncRNAs by three cycles of freezing and thawing. CONCLUSIONS: RP11-397D12.4, AC007403.1, and ERICH1-AS1 may be potential biomarkers for predicting the tumorigenesis of NSCLC in the future.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Pulmonares/genética , ARN Largo no Codificante/sangre , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , China , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Pronóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Regulación hacia Arriba
10.
J Asian Nat Prod Res ; 17(1): 56-63, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25492214

RESUMEN

Curcumin, the biologically active compound from the rhizome of Curcuma longa, could inhibit cell growth and induce apoptosis in gastric carcinoma. However, the underlying mechanism of curcumin on gastric carcinoma cells still needs further investigation. In this study, morphological observation indicated that curcumin inhibited the proliferation of AGS cells in a dose-dependent manner. According to the flow cytometric analysis, curcumin treatment resulted in G2/M arrest in AGS cells, accompanied with an increased expression of cyclin B1 and a decreased expression of cyclin D1. In addition, DNA ladders were observed by gel electrophoresis. Meanwhile, the activities of caspase-3, -8, and -9 were also enhanced in curcumin-treated AGS cells. Nevertheless, the increased activities could be inhibited by benzyloxycarbonyl-Val-Ala-Asp (OME)-fluoromethylketone (z-VAD-fmk), which suggested that the apoptosis was caspase-dependent. Furthermore, downregulation of rat sarcoma (Ras) and upregulation of extracellular-signal-regulated kinase (ERK) were also observed in AGS cells treated with curcumin by Western blot. U0126, an ERK inhibitor, blocked curcumin-induced apoptosis. The results suggested that curcumin inhibited the growth of the AGS cells and induced apoptosis through the activation of Ras/ERK signaling pathway and downstream caspase cascade, and curcumin might be a potential target for the treatment of gastric carcinoma.


Asunto(s)
Curcumina/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Clorometilcetonas de Aminoácidos/química , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Curcuma/química , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Humanos , Estructura Molecular , Oligopéptidos , Transducción de Señal/efectos de los fármacos
11.
Tumour Biol ; 35(3): 2451-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24197982

RESUMEN

The pathogenesis of gastric cancer is characterized by excessive proliferation, abnormal differentiation, and reduced apoptosis. Ursolic acid, extracted from traditional Chinese medicine bearberry, inhibits cell growth and induces apoptosis in gastric cancer. However, the mechanism of the proapoptotic effect of ursolic acid on gastric cancer cells needs further investigation. In our present study, we found in apoptotic gastric cancer BGC-823 cells induced by ursolic acid that a translocation of cofilin-1 protein from the cytoplasm to the mitochondria promoted the release of cytochrome c from the mitochondria to the cytoplasm, thereby activating the caspase cascade and finally inducing gastric cancer cell apoptosis. These results implied that the mitochondrial translocation of cofilin-1 might play a crucial role in the promotion of apoptosis and might be a key target for future treatment of human gastric cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Cofilina 1/metabolismo , Neoplasias Gástricas/metabolismo , Triterpenos/farmacología , Western Blotting , Línea Celular Tumoral , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Microscopía Fluorescente , Mitocondrias/metabolismo , Transporte de Proteínas/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Ácido Ursólico
12.
Tumour Biol ; 35(3): 2599-606, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375248

RESUMEN

The study aims to investigate the effect of microRNA-497 (miR-497) expression and bufalin treatment in regulating colorectal cancer invasion and metastasis. The expression of miR-497 in colorectal cancer cells with prior treatment with bufalin was determined using real-time quantitative PCR. The nude mouse abdominal aortic ring assay and the human umbilical vein endothelial cell (HUVEC) migration assays were used to measure the angiogenic effect of bufalin. The effect of both bufalin treatment and miR-497 overexpression on colorectal cancer metastasis was measured using an animal tumor model together with in vivo imaging. These results suggested: (1) In the HCT116 cells and HUVECs, proliferation was inhibited in a time-dependent and/or concentration-dependent manner following the administration of bufalin; (2) Bufalin inhibited cell migration in a concentration-dependent manner by cell motility assays; (3) In the aortic ring assay, administration bufalin to the aortic ring significantly promoted micro-angiogenesis of nude mouse abdominal aorta in a concentration-dependent and time-dependent manner; (4) miR-497 was upregulated in human colorectal cancer HCT116 cells treated with different concentrations of bufalin in a concentration-dependent manner; and (5) Combined application of bufalin and miR-497 significantly reduced metastatic lesions and reduced weight loss compared with bufalin alone and control groups in vivo. This study revealed that bufalin inhibited angiogenesis and regulated miR-497 expression and that bufalin and miR-497 acted in synergy to inhibit colorectal cancer metastasis, resulting in improved quality of life in a nude mouse model.


Asunto(s)
Antineoplásicos/farmacología , Bufanólidos/farmacología , Neoplasias Colorrectales/genética , MicroARNs/genética , Invasividad Neoplásica/genética , Animales , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Humanos , Masculino , Ratones , Ratones Desnudos , MicroARNs/metabolismo , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
J Pain ; : 104598, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866121

RESUMEN

The voltage-gated sodium channel ß2 subunit protein (SCN2B) plays a crucial role in neuropathic pain. However, the role and mechanisms of SCN2B in orofacial neuropathic pain are still unclear. This study aimed to investigate the upstream regulatory mechanisms of SCN2B in the trigeminal ganglion (TG) underlying orofacial neuropathic pain. Chronic constriction injury of the infraorbital nerve (CCI-ION) of mice was performed to establish the model of orofacial neuropathic pain. Von-Frey filament test was performed to detect the head withdrawal threshold (HWT) of mice. RT-qPCR, WB, FISH, and IF were used to detect the expression and distribution of SCN2B and miR-6954-3p in the TG of mice. A luciferase activity assay was carried out to prove the binding between SCN2B mRNA and miR-6954-3p. After the CCI-ION surgery, the levels of Scn2b mRNA and protein significantly increased and miR-6954-3p decreased in the TG of mice with decreasing HWT. IF staining revealed that SCN2B was expressed specifically in the TG neurons. Silencing SCN2B in the TG of CCI-ION mice significantly increased the HWT. Importantly, the 3' untranslated region (UTR) of Scn2b mRNA was proved to bind with miR-6954-3p. FISH and IF staining demonstrated that miR-6954-3p was expressed in TG neurons and co-expressed with SCN2B. Furthermore, intra-ganglionic injection of miR-6954-3p agomir into the TG of CCI-ION mice resulted in the down-regulation of SCN2B and increased the HWT. These findings suggest that the down-regulation of miR-6954-3p in the TG promotes orofacial neuropathic pain by promoting SCN2B expression following trigeminal nerve injury. PERSPECTIVE: This study points to the important role of SCN2B in orofacial neuropathic pain. Furthermore, miR-6954-3p is proven to regulate the expression of SCN2B by binding to the 3' UTR of Scn2b mRNA. These findings indicate that SCN2B and miR-6954-3p are potential therapeutic targets for the treatment of orofacial neuropathic pain.

14.
Comput Biol Med ; 171: 108155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430740

RESUMEN

OBJECTIVE: The current models of estimating vascular age (VA) primarily rely on the regression label expressed with chronological age (CA), which does not account individual differences in vascular aging (IDVA) that are difficult to describe by CA. This may lead to inaccuracies in assessing the risk of cardiovascular disease based on VA. To address this limitation, this work aims to develop a new method for estimating VA by considering IDVA. This method will provide a more accurate assessment of cardiovascular disease risk. METHODS: Relative risk difference in vascular aging (RRDVA) is proposed to replace IDVA, which is represented as the numerical difference between individual predicted age (PA) and the corresponding mean PA of healthy population. RRDVA and CA are regard as the influence factors to acquire VA. In order to acquire PA of all samples, this work takes CA as the dependent variable, and mines the two most representative indicators from arteriosclerosis data as the independent variables, to establish a regression model for obtaining PA. RESULTS: The proposed VA based on RRDVA is significantly correlated with 27 indirect indicators for vascular aging evaluation. Moreover, VA is better than CA by comparing the correlation coefficients between VA, CA and 27 indirect indicators, and RRDVA greater than zero presents a higher risk of disease. CONCLUSION: The proposed VA overcomes the limitation of CA in characterizing IDVA, which may help young groups with high disease risk to promote healthy behaviors.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Envejecimiento , Factores de Riesgo
15.
J Pharm Anal ; 14(4): 100901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665223

RESUMEN

The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer. Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis (YTE-17), attributing these effects to the regulation of multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited. In this study, we conducted isobaric tags for relative and absolute quantification (iTRAQ) analysis on intestinal epithelial cells (IECs) exposed YTE-17, both in vitro and invivo, revealing a significant inhibition of the Wnt family member 5a (Wnt5a)/c-Jun N-terminal kinase (JNK) signaling pathway. Subsequently, we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment (TME), specifically focusing on macrophage-mediated T helper 17 (Th17) cell induction in a colitis-associated cancer (CAC) model with Wnt5a deletion. Additionally, we performed the single-cell RNA sequencing (scRNA-seq) on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition, lineage, and functional status of immune mesenchymal cells during different stages of colorectal cancer (CRC) progression. Remarkably, our findings demonstrate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17, leading to the restoration of regulatory T (Treg)/Th17 cell balance in azoxymethane (AOM)/dextran sodium sulfate (DSS) model. Furthermore, we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages. Notably, our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical ß-catenin oncogenic pathway in vivo. Specifically, we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with ß-catenin activity within the TME, involving macrophages and T cells. In summary, our study undergoes the potential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment, thereby mitigating the risk of malignancies.

16.
Dev Comp Immunol ; 138: 104530, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084754

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is one of the most highly polyphagous invasive pests causing serious damage to maize crops in China. However, little is known about the gut immune responses to the environment, particularly along the migration routes in Jianghuai, China, throughout the autumn and winter. In this study, high-throughput sequencing and real-time quantitative PCR (RT-qPCR) were employed to examine the variations in immune genes and gut microbiome communities between captive and wild fall armyworm populations. Results showed that the diversity and community of the gut's microbes were higher in wild populations, and the average weighted UniFrac distance between bacterial taxa varied. A wide variety of immune genes were more abundant in the wild populations than in others. Results indicated that diets and different survival conditions impacted the gut microbiota and immune system of S. frugiperda, which was crucial for environmental adaptation. These differences in gut microbiota and immune responses between wild and captive Fall armyworms are critical for comprehending the symbiotic relationship between microbes, immune genes, and hosts. They also highlight the need for increased focus on developing more effective and environmentally friendly pest control methods.


Asunto(s)
Microbioma Gastrointestinal , Animales , China , Sistema Inmunológico , Larva , Spodoptera/genética , Zea mays/genética
17.
Exp Ther Med ; 25(2): 86, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36741914

RESUMEN

The anti-EGFR antibody cetuximab is used as a first-line targeted therapeutic drug in colorectal cancer. It has previously been reported that the efficacy of the EGFR antibody cetuximab is limited by the emergence of acquired drug resistance. In our previous study the transmissibility effect of exosomes from drug resistant tumor cells to sensitive tumor cells was identified. It can therefore be hypothesized that drug resistant cells might affect neighboring and distant cells via regulation of exosome composition and behavior. However, the mechanism of exosomes in KRAS-wild-type colorectal cancer (CRC) remains unknown. In the present study, functional analysis of overall survival post-diagnosis in patients with KRAS wild-type and those with mutant CRC was performed using human CRC specimens. Furthermore, it was demonstrated that multidrug resistance (MDR) cancer cell-derived exosomes were potentially a key factor, which promoted cetuximab-resistance in CRC cells and reduced the inhibitory effect of cetuximab in CRC xenograft models. The Cell Counting Kit-8 and colony formation assays were performed to assess the effects of exosomes derived from CRC/MDR cells on cetuximab resistance. Sphere formation assay results demonstrated that exosomes derived from CRC/MDR cells altered the self-renewal and multipotential ability of stem-cell-associated markers and facilitated resistance to cetuximab in cetuximab-sensitive cells. Furthermore, exosomes derived from CRC/MDR cells decreased sensitivity to cetuximab via the activation of PI3K/AKT signaling, which promoted Sox2 and programmed death-ligand 1 (PD-L1) mRNA and protein expression according to reverse transcription-quantitative PCR, western blotting and immunohistochemistry analyses, as well as apoptosis resistance both in vitro and in vivo according to a TUNEL assay. In conclusion, the results of the present study demonstrated that exosomes derived from CRC/MDR cells may promote cetuximab resistance in KRAS wild-type cells via activation of the PI3K/AKT signaling pathway-mediated expression of Sox2 and PD-L1, which will be useful for investigating a potential clinical target in predicting cetuximab resistance.

18.
Redox Biol ; 65: 102810, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37478541

RESUMEN

Exposure to ionizing radiation leads to oxidative damages in living cells. NADPH provides the indispensable reducing power to regenerate the reduced glutathione to maintain cellular redox equilibria. In mammalian cells, pentose phosphate pathway (PPP) is the major route to produce NADPH by using glycolytic intermediates, and the rate-limiting step of PPP is controlled by glucose-6-phosphate dehydrogenase (G6PD). Nevertheless, whether G6PD is timely co-opted under ionizing radiation to cope with oxidative stress remains elusive. Here we show that cellular G6PD activity is induced 30 min after ionizing radiation, while its protein expression is mostly unchanged. Mechanistically, casein kinase 2 (CK2) phosphorylates G6PD T145 under ionizing radiation, which consolidates the enzymatic activity of G6PD by facilitating G6PD binding with its substrate NADP+. Further, CK2-dependent G6PD T145 phosphorylation promotes NADPH production, decreases ROS level and supports cell proliferation under ionizing radiation. Our findings report a new anti-oxidative signaling route under ionizing radiation, by which CK2-mediated rapid activation of G6PD orchestrates NADPH synthesis to maintain redox homeostasis, thereby highlighting its potential value in the early treatment of ionizing radiation-induced injuries.


Asunto(s)
Quinasa de la Caseína II , Glucosafosfato Deshidrogenasa , Animales , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , NADP/metabolismo , Fosforilación , Oxidación-Reducción , Radiación Ionizante , Homeostasis , Vía de Pentosa Fosfato , Mamíferos/metabolismo
19.
Water Res ; 242: 120185, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327543

RESUMEN

Microplastics originate from the physical, chemical, or biological degradation of plastics in the environment. Once ingested by organisms at the bottom of the food chain, microplastics are passed on to organisms at higher trophic levels, posing a threat to human health. The distribution of microplastics and the metabolic pathways involved in their microbial degradation in surface sediments of drinking water reservoirs are still poorly understood. This study analyzed the occurrence patterns of microplastics and microbial community structure associated with microplastic biodegradation in surface sediments from a deep reservoir at various hydrostatic pressures. Based on the results of Fourier-transform and laser direct infrared spectroscopy, elevating the pressure resulted in altered sizes and shapes of microplastics in sediment samples with the presence of microorganisms. The influence of hydrostatic pressure on small-sized microplastics (20-500 µm) was pronounced. For instance, high pressure accelerated the breakdown of fibers, pellets, and fragments into smaller-sized microplastics. In particular, the mean size of polyethylene terephthalate microplastics decreased from 425.78 µm at atmospheric pressure to 366.62 µm at 0.7 Mpa. Metagenomic analysis revealed an increase in the relative abundances of plastic-degrading genera, such as Rhodococcus, Flavobacterium, and Aspergillus, in response to elevated pressures. Eight functional genes for biodegradation of polystyrene, polyethylene, and polyethylene terephthalate microplastics were annotated, including paaK, ladA, tphA3. Of these, tphA3 gene abundance was negatively influenced by hydrostatic pressure, providing direct evidence for the pathway by which microbial metabolism of polyethylene terephthalate led to decreased microplastic size under high pressure conditions. This study presents novel insights into hydrostatic pressure-driven microbial community structure, functional gene abundance, and key metabolic pathways associated with biodegradation of microplastics in reservoir sediments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/análisis , Presión Hidrostática , Tereftalatos Polietilenos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química
20.
Sci Rep ; 13(1): 19859, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37963909

RESUMEN

Theoretically pulse wave velocity (PWV) is obtained by calculating the distance between two waveform probes divided by the time difference, and PWV ratio is used to assess the arterial stiffness gradient (SG) from proximal to distal. The aim was to investigate segmental upper-limb PWV (ulPWV) differences and the effects of hypertension and or aging on each ulPWV and SG. The study collected multi-waveform signals and conduction distances from 167 healthy individuals and 92 hypertensive patients. The results showed significant differences between ulPWVs (P < 0.001), with increased and then decreased vascular stiffness along the proximal transmission to the distal peripheral artery and then to the finger. Adjusted for age and sex, ulPWVs in hypertension exceeded that of healthy individuals, with significant differences between groups aged ≥ 50 years (P < 0.05). The hrPWV/rfPWV (heart-radial/radial-finger) was reduced in hypertension and differed significantly between the aged ≥ 50 years (P = 0.015); the ratio of baPWV (brachial-ankle) to ulPWV differed significantly between groups (P < 0.05). Hypertension affected the consistency of rfPWV with hfPWV (heart-finger). The findings suggest that segmented ulPWV is instrumental in providing stiffness corresponding to the physiological structure of the vessel. The superimposition of hypertension and or aging exacerbates peripheral arterial stiffness, as well as alteration in stiffness gradient.


Asunto(s)
Hipertensión , Rigidez Vascular , Humanos , Rigidez Vascular/fisiología , Análisis de la Onda del Pulso/métodos , Arterias , Extremidad Superior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA