RESUMEN
Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.
Asunto(s)
Electrofisiología , Polímeros , Agua , Animales , alfa-Ciclodextrinas/química , Electrodos , Electrofisiología/instrumentación , Electrofisiología/métodos , Electrofisiología/tendencias , Corazón , Músculos , Polietilenglicoles/química , Polímeros/química , Seda/química , Arañas , Agua/química , Hidrogeles/química , Electrónica/instrumentación , Electrónica/métodos , Electrónica/tendenciasRESUMEN
Currently, no therapy is proven to effectively improve heart failure with preserved ejection fraction (HFpEF). Although stem cell therapy has demonstrated promising results in treating ischemic heart disease, the effectiveness of treating HFpEF with human umbilical cord mesenchymal stem cells (hucMSCs) remains unclear. To answer this question, we administered hucMSCs intravenously (i.v.), either once or repetitively, in a mouse model of HFpEF induced by a high-fat diet and NG-nitroarginine methyl ester hydrochloride. hucMSC treatment improved left ventricular diastolic dysfunction, reduced heart weight and pulmonary edema, and attenuated cardiac modeling (inflammation, interstitial fibrosis, and hypertrophy) in HFpEF mice. Repeat hucMSC administration had better outcomes than a single injection. In vitro, hucMSC culture supernatants reduced maladaptive remodeling in neonatal-rat cardiomyocytes. Ribonucleic acid sequencing and protein level analysis of left ventricle (LV) tissues suggested that hucMSCs activated the protein kinase B (Akt)/forkhead box protein O1 (FoxO1) signaling pathway to treat HFpEF. Inhibition of this pathway reversed the efficacy of hucMSC treatment. In conclusion, these findings indicated that hucMSCs could be a viable therapeutic option for HFpEF.
RESUMEN
BACKGROUND: For premalignant main duct intraductal papillary mucinous neoplasms (MD-IPMN), laparoscopic duodenum and spleen-preserving subtotal or total pancreatectomy (LDSP-STP/TP) seems to be a viable option for parenchyma-sparing pancreatectomy. PATIENTS AND METHODS: On the basis of the imaging features, family history, genomic alterations, intraoperative ultrasound examination, and frozen section evaluation, we have proposed patient selection strategies for the LDSP-STP/TP technique for the first time. Additionally, a comprehensive step-by-step overview of this technique has been provided. To date, we have performed five LDSP-STP procedures and one LDSP-TP procedure. RESULTS: We successfully performed selective resection of the affected pancreatic parenchyma while preserving the duodenum, common bile duct (CBD), spleen, and splenic artery and vein. The operation time ranged from 295 to 495 min, with blood loss ranging from 100 to 300 mL. Postoperative pathological results revealed low-grade dysplasia in the resected pancreatic samples and margins. The patients resumed eating within 3-5 days after surgery, and all postoperative complications were classified as grade I according to the Clavien-Dindo classification. At the 3-month follow-up, there were no cases of CBD ischemic stenosis, splenic ischemia, or pseudocyst formation observed. For patients who received LDSP-STP, the longitudinal diameter of the remaining pancreatic tail ranged from 2.2 to 4.6 cm, and they demonstrated satisfactory long-term blood glycemic control. CONCLUSIONS: LDSP-STP/TP demonstrates technical feasibility and safety. It allows for the selective resection of the affected pancreatic parenchyma, thereby minimizing the impact of pancreatic functional impairment. However, it is crucial to validate this technique through long-term prospective observations.
RESUMEN
The bound states in the continuum (BICs) have attracted much attention in designing metasurface due to their high Q-factor and effectiveness in suppressing radiational loss. Here we report on the realization of the third harmonic generation (THG) at a near-ultraviolet wavelength (343â nm) via accidental BICs in a metasurface. The absolute conversion efficiency of the THG reaches 1.13 × 10-5 at a lower peak pump intensity of 0.7â GW/cm2. This approach allows the generation of an unprecedentedly high nonlinear conversion efficiency with simple structures.
RESUMEN
OBJECTIVE: This study aimed to establish a MRI-based deep learning radiomics (DLR) signature to predict the human epidermal growth factor receptor 2 (HER2)-low-positive status and further verified the difference in prognosis by the DLR model. METHODS: A total of 481 patients with breast cancer who underwent preoperative MRI were retrospectively recruited from two institutions. Traditional radiomics features and deep semantic segmentation feature-based radiomics (DSFR) features were extracted from segmented tumors to construct models separately. Then, the DLR model was constructed to assess the HER2 status by averaging the output probabilities of the two models. Finally, a KaplanâMeier survival analysis was conducted to explore the disease-free survival (DFS) in patients with HER2-low-positive status. The multivariate Cox proportional hazard model was constructed to further determine the factors associated with DFS. RESULTS: First, the DLR model distinguished between HER2-negative and HER2-overexpressing patients with AUCs of 0.868 and 0.763 in the training and validation cohorts, respectively. Furthermore, the DLR model distinguished between HER2-low-positive and HER2-zero patients with AUCs of 0.855 and 0.750, respectively. Cox regression analysis showed that the prediction score obtained using the DLR model (HR, 0.175; p = 0.024) and lesion size (HR, 1.043; p = 0.009) were significant, independent predictors of DFS. CONCLUSIONS: We successfully constructed a DLR model based on MRI to noninvasively evaluate the HER2 status and further revealed prospects for predicting the DFS of patients with HER2-low-positive status. CLINICAL RELEVANCE STATEMENT: The MRI-based DLR model could noninvasively identify HER2-low-positive status, which is considered a novel prognostic predictor and therapeutic target. KEY POINTS: ⢠The DLR model effectively distinguished the HER2 status of breast cancer patients, especially the HER2-low-positive status. ⢠The DLR model was better than the traditional radiomics model or DSFR model in distinguishing HER2 expression. ⢠The prediction score obtained using the model and lesion size were significant independent predictors of DFS.
Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Supervivencia sin Enfermedad , Estudios Retrospectivos , Radiómica , Imagen por Resonancia MagnéticaRESUMEN
OBJECTIVE: We aimed to evaluate the mitral valve calcification and mitral structure detected by cardiac computed tomography (cardiac CT) and establish a scoring model based on cardiac CT and clinical factors to predict early good mitral valve repair (EGMR) and guide surgical strategy in rheumatic mitral disease (RMD). MATERIALS AND METHODS: This is a retrospective bi-center cohort study. Based on cardiac CT, mitral valve calcification and mitral structure in RMD were quantified and evaluated. The primary outcome was EGMR. A logical regression algorithm was applied to the scoring model. RESULTS: A total of 579 patients were enrolled in our study from January 1, 2019, to August 31, 2022. Of these, 443 had baseline cardiac CT scans of adequate quality. The calcification quality score, calcification and thinnest part of the anterior leaflet clean zone, and papillary muscle symmetry were the independent CT factors of EGMR. Coronary artery disease and pulmonary artery pressure were the independent clinical factors of EGMR. Based on the above six factors, a scoring model was established. Sensitivity = 95% and specificity = 95% were presented with a cutoff value of 0.85 and 0.30 respectively. The area under the receiver operating characteristic of external validation set was 0.84 (95% confidence interval [CI] 0.73-0.93). CONCLUSIONS: Mitral valve repair is recommended when the scoring model value > 0.85 and mitral valve replacement is prior when the scoring model value < 0.30. This model could assist in guiding surgical strategies for RMD. CLINICAL RELEVANCE STATEMENT: The model established in this study can serve as a reference indicator for surgical repair in rheumatic mitral valve disease. KEY POINTS: ⢠Cardiac CT can reflect the mitral structure in detail, especially for valve calcification. ⢠A model based on cardiac CT and clinical factors for predicting early good mitral valve repair was established. ⢠The developed model can help cardiac surgeons formulate appropriate surgical strategies.
Asunto(s)
Válvula Mitral , Cardiopatía Reumática , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Cardiopatía Reumática/diagnóstico por imagen , Cardiopatía Reumática/cirugía , Estudios Retrospectivos , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Calcinosis/diagnóstico por imagen , Calcinosis/cirugía , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/cirugía , Adulto , Valor Predictivo de las Pruebas , Estudios de CohortesRESUMEN
BACKGROUND: MRI radiomics has been explored for three-tiered classification of breast cancer HER2 expression (i.e., HER2-zero, HER2-low, or HER2-positive), although understanding of how such models reach their predictions is lacking. OBJECTIVE: To develop and test multiparametric MRI radiomics machine-learning models for differentiating three-tiered HER2 expression levels in patients with breast cancer, and to explain the contributions of model features through local and global interpretations using SHapley Additive exPlanation (SHAP) analysis. METHODS: This retrospective study included 737 patients (mean age, 54.1±10.6 years) with breast cancer from two centers (center 1: n=578; center 2: n=159), who underwent breast MRI and had HER2 expression determined after excisional biopsy. Analysis entailed two tasks: differentiating HER2-negative (i.e., HER2-zero or HER2-low) from HER2-positive tumors (task 1), and differentiating HER2-zero from HER2-low tumors (task 2). For each task, patients from center 1 were randomly assigned in 7:3 ratio to training (task 1: n=405; task 2: n=284) or internal test (task 1: n=173; task 2: n=122) sets; those from center 2 formed an external test set (task 1: n=159; task 2: n=105). Radiomics features were extracted from early-phase dynamic contrast-enhanced images (DCE), T2-weighted images (T2WI), and DWI. For each task, a support vector machine (SVM) was used for feature selection; a multiparametric radiomics score (radscore) was computed using feature weights from SVM correlation coefficients; conventional MRI and combined models were constructed; and model performances were evaluated. SHAP analysis was used to provide local and global interpretations for model outputs. RESULTS: In the external test set, for task 1, AUCs for the conventional MRI model, radscore, and combined model were 0.624, 0.757, and 0.762, respectively; for task 2, AUC for radscore was 0.754, and no conventional MRI model or combined model could be constructed. SHAP analysis identified early-phase DCE features as having the strongest influence for both tasks; T2WI features also had a prominent role for task 2. CONCLUSION: The findings indicate suboptimal performance of MRI radiomics models for noninvasive characterization of HER2 expression. CLINICAL IMPACT: The study provides an example of the use of SHAP interpretation analysis to better understand predictions of imaging-based machine learning models.
RESUMEN
IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (â¼12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VANR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Tiburones , Tiburones/inmunología , Tiburones/genética , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Antígenos/inmunología , Antígenos/genética , Enfermedades de los Peces/inmunologíaRESUMEN
In hypertrophic scars, the differentiation and migration of fibroblasts are influenced by the extracellular matrix microenvironment, which includes factors such as stiffness, restraint, and tensile force. These mechanical stresses incite alterations in cell behavior, accompanied by cytoskeletal protein reorganization. However, the role of nucleo-skeletal proteins in this context remains underexplored. In this study, we use a polyacrylamide hydrogel (PAA) to simulate the mechanical stress experienced by cells in scar tissue and investigate the impact of Emerin on cell behavior. We utilize atomic force microscopy (AFM) and RNA interference technology to analyze cell differentiation, migration, and stiffness. Our findings reveal that rigid substrates and cellular restriction elevate Emerin expression and diminish differentiation. Conversely, reducing Emerin expression leads to attenuated cell differentiation, where stiffness and constraining factors exert no notable influence. Furthermore, a softening of cells and an enhanced migration rate are also markedly observed. These observations indicate that variations in nuclear skeletal proteins, prompted by diverse matrix microenvironments, play a pivotal role in the pathogenesis of hypertrophic scars (HSs). This research offers novel insights and a reference point for understanding scar fibrosis formation mechanisms and preventing fibrosis.
Asunto(s)
Diferenciación Celular , Movimiento Celular , Fibroblastos , Proteínas de la Membrana , Microscopía de Fuerza Atómica , Proteínas Nucleares , Fibroblastos/metabolismo , Fibroblastos/citología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Resinas Acrílicas/química , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Estrés Mecánico , Matriz Extracelular/metabolismoRESUMEN
BACKGROUND. Abbreviated protocols could allow wider adoption of MRI in patients undergoing breast cancer neoadjuvant chemotherapy (NAC). However, abbreviated MRI has been explored primarily in screening settings. OBJECTIVE. The purpose of this article was to compare diagnostic performance of abbreviated MRI and full-protocol MRI for evaluation of breast cancer NAC response, stratifying by radiologists' breast imaging expertise. METHODS. This retrospective study included 203 patients with breast cancer (mean age, 52.1 ± 11.2 [SD] years) from two hospitals who underwent MRI before NAC initiation and after NAC completion before surgical resection from March 2017 to April 2021. Abbreviated MRI was extracted from full-protocol MRI and included the axial T2-weighted sequence and precontrast and single early postcontrast T1-weighted sequences. Three general radiologists and three breast radiologists independently interpreted abbreviated and full-protocol MRI in separate sessions, identifying enhancing lesions to indicate residual tumor and measuring lesion size. The reference standard was presence and size of residual tumor on pathologic assessment of post-NAC surgical specimens. RESULTS. A total of 50 of 203 patients had pathologic complete response (pCR). Intraobserver and interobserver agreement for abbreviated and full-protocol MRI for general and breast radiologists ranged from substantial to nearly perfect (κ = 0.70-0.81). Abbreviated MRI compared with full-protocol MRI showed no significant difference for general radiologists in sensitivity (54.7% vs 57.3%, p > .99), specificity (92.8% vs 95.6%, p = .29), or accuracy (83.4% vs 86.2%, p = .30), nor for breast radiologists in sensitivity (60.0% vs 61.3%, p > .99), specificity (94.6% vs 97.4%, p = .22), or accuracy (86.0% vs 88.5%, p = .30). Sensitivity, specificity, and accuracy were not significantly different between protocols for any reader individually (p > .05). Mean difference in residual tumor size on MRI relative to pathology for abbreviated protocol ranged for general radiologists from -0.19 to 0.03 mm and for breast radiologists from -0.15 to -0.05 mm, and for full protocol ranged for general radiologists from 0.57 to 0.65 mm and for breast radiologists from 0.66 to 0.79 mm. CONCLUSION. Abbreviated compared with full-protocol MRI showed similar intraobserver and interobserver agreement and no significant difference in diagnostic performance. Full-protocol MRI but not abbreviated MRI slightly overestimated pathologic tumor sizes. CLINICAL IMPACT. Abbreviated protocols may facilitate use of MRI for post-NAC response assessment by general and breast radiologists.
Asunto(s)
Neoplasias de la Mama , Humanos , Adulto , Persona de Mediana Edad , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/cirugía , Estudios Retrospectivos , Terapia Neoadyuvante , Neoplasia Residual , Imagen por Resonancia Magnética/métodosRESUMEN
BACKGROUND: In mammals, transitioning from sole milk uptake to the intake of solid feed results in dramatic developmental changes in intestinal function and immunological status. In fact, weaning stress is often accompanied by intestinal inflammatory processes. To develop effective intervention strategies, it is necessary to characterize the developmental pattern and immune response that occurs on weaning, as we have done in this study for piglets. RESULTS: To comprehensively delineate cell heterogeneity in ileum tissues and the underlying mechanisms in weaning-induced intestinal inflammation of piglets, we have analyzed the transcriptomes of 42,149 cells from ileum mucosa of normally suckling and post-weaned piglets. There were 31 cell subtypes including epithelial, stromal, and immune cells. A bifurcating trajectory was inferred to separate secretory and absorptive lineages. Integrated cross-species datasets showed well-conserved cellular architectures and transcription signatures between human and pig. Comparative analyses of cellular components, cell-cell communications, and molecular states revealed that T cell subpopulations were significantly altered in weaned piglets. We found that T helper (Th) 17 functional plasticity across changes in the cytokine milieu and the enrichment of granzyme B (GZMB)-expressing cytotoxic T cells potentially exacerbate mucosal inflammation via mitochondrial dysfunction in epithelial cells. CONCLUSIONS: Our work has elucidated the single-cell molecular characteristics of the piglet ileum before and after weaning. We have provided an atlas that portrays the landscape of the intestinal pathophysiological inflammatory process associated with weaning, finding a level of conservation between human and pig that support the use of piglets as a model for human infants.
Asunto(s)
Íleon , Mucosa Intestinal , Animales , Humanos , Inflamación/genética , Mamíferos , ARN Mensajero , Porcinos , DesteteRESUMEN
BACKGROUND: Sleep disorders are prevalent after stroke, resulting in high recurrence rates and mortality. But the biomarkers of sleep disorders in stroke patients remain to be elucidated. This study aimed to explore the relationship between total bilirubin-to-uric acid ratio (TUR) and sleep quality after acute ischemic stroke (AIS). METHODS: Three hundred twenty-six AIS patients were recruited and followed up 1 month after stroke in our study. Serum total bilirubin and uric acid levels were obtained within 24 h after admission. The Pittsburgh Sleep Quality Index (PSQI) was used to evaluate sleep quality 1 month after stroke. We conducted receiver operating characteristic (ROC) curve analysis and screened the optimal biomarker to differentiate sleep disorders after stroke. Then the TUR was stratified according to the best cut-off value (0.036) of the ROC and further analysed by binary logistic regression analysis. Additionally, the interaction was used to explore the difference in its effect on post-stroke sleep quality in different subgroups. RESULTS: Three hundred thirty-one patients (40.2%) were considered as having poor sleep quality during the one-month follow-up. Compared to patients with good sleep, patients with poor sleep were more likely to have higher TUR (IQR), 0.05 (0.03-0.06) versus 0.03 (0.02-0.04), P < 0.001. After adjusting for confounding factors, binary regression analysis demonstrated that a high TUR (≥0.036) was independently related to post-stroke poor sleep quality (OR = 3.75, 95% CI = 2.02-6.96, P < 0.001). CONCLUSIONS: High TUR is associated with an increased risk of poor sleep quality in AIS patients, especially in females, diabetics, and patients with hyperlipidaemia.
Asunto(s)
Accidente Cerebrovascular Isquémico , Trastornos del Sueño-Vigilia , Accidente Cerebrovascular , Femenino , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Ácido Úrico , Estudios de Casos y Controles , Bilirrubina , Calidad del Sueño , Estudios Prospectivos , Accidente Cerebrovascular/complicaciones , Biomarcadores , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/complicacionesRESUMEN
BACKGROUND: Tumor-infiltrating CD8 cells and expression of programmed cell death ligand 1 (PD-L1) are immune checkpoint markers in patients with hepatocellular carcinoma (HCC). We aimed to determine the ability of preoperative gadoxetic acid-enhanced magnetic resonance imaging (MRI) findings to predict CD8 cell density and PD-L1 expression in HCC. METHODS: A total of 120 patients with HCC who underwent 3.0-T gadoxetic acid-enhanced MRI before curative resection from January 2016 to June 2020 were enrolled and divided into a training set (n = 84) and a testing set (n = 36). Thirty-four patients with advanced stage HCC who received anti-PD-1 inhibitor between January 2017 and April 2020 and underwent pretreated gadoxetic acid-enhanced MRI scans were enrolled in an independent validation set. PD-L1 expression and CD8 cell infiltration were assessed with immunohistochemical staining, respectively. Two radiologists blinded to pathology results evaluated the pretreated MR features in consensus. Logistic regression and the receiver operating characteristic curve (ROC) analyses were used to determine the value of image features to predict high CD8 cell density, PD-L1 positivity and the combination of high CD8 cell density and PD-L1 positivity in HCC in the training set and validated the findings in the testing set. The associations of MRI predictors with the objective response to immunotherapy were assessed in the independent validation. RESULTS: In the training set, the independent MRI predictors were irregular tumor margin (ITM, P = 0.008) and peritumoral low signal intensity (PLSI) on hepatobiliary phase (HBP) images (P < 0.001) for PD-L1 positivity, absence of an enhancing capsule (AEC, P = 0.001) and PLSI on HBP images (P = 0.025) for high CD8 cell density, and PLSI on HBP images (P = 0.001) and ITM (P = 0.023) for the both. The area under the curves (AUCs) of the predictive models for evaluating PD-L1 positivity, high CD8 cell density and the combination of high CD8 cell density and PD-L1 positivity were 0.810 and 0.809, 0.740 and 0.728, and 0.809 and 0.874 in the training and testing set, respectively. The objective response was demonstrated to be associated with the combination of PLSI on HBP images and ITM (PHI, P = 0.004), and the combination of PLSI on HBP images and AEC (PHA, P = 0.012) in the independent validation set. CONCLUSIONS: Pretreated MRI features have the potential to identify patients with HCC in an immune-activated state and predict outcomes of immunotherapy. Trial registration The study was retrospectively registered on March 5, 2020 with registration no. [2020] 02-012-01.
Asunto(s)
Antígeno B7-H1/biosíntesis , Linfocitos T CD8-positivos/citología , Carcinoma Hepatocelular/diagnóstico por imagen , Medios de Contraste/química , Gadolinio DTPA , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Curva ROC , Análisis de Regresión , Estudios Retrospectivos , Resultado del Tratamiento , Adulto JovenRESUMEN
A metalens made of compact planar metastructure exhibits an excellent capability of focusing. The high-quality transmissive and reflective focusing simultaneously provides Fourier transform (FT) operation for optical information processing. Here we show a transflective on-chip metalens (TOM) made of orthogonal nano-grooves (ONGs). The TOM simultaneously converges transmitted and reflected (T&R) waves to the designed focal points. By adjusting the phase gradient profiles provided by the ONGs, the focal lengths of the T&R in-plane waves can be independently tuned. Our simulations show that the TOM possesses the advantages of broadband (>400â nm bandwidth) and high-focusing-efficiency (â¼60%) dual-focusing capability. Further, we utilize the TOM to build a one-to-two 4-f optical system. Two different spatial filtering operations based on FT can be simultaneously implemented in axial transmission and off-axis reflection channels for one input signal. We expect that the dual-focusing metalens approach can realize parallel optical processing in on-chip optical computing, spatial filtering, and beyond.
RESUMEN
Photonic quantum information processing relies on operating the quantum state of photons, which usually involves bulky optical components unfavorable for system miniaturization and integration. Here, we report on the transformation and distribution of polarization-entangled photon pairs with multichannel dielectric metasurfaces. The entangled photon pairs interact with metasurface building blocks, where the geometrical-scaling-induced phase gradients are imposed, and are transformed into two-photon entangled states with the desired polarization. Two metasurfaces, each simultaneously distributing polarization-entangled photons to spatially separated multiple channels M (N), may accomplish M×N channels of entanglement distribution and transformation. Experimentally we demonstrate 2×2 and 4×4 distributed entanglement states, including Bell states and superposition of Bell states, with high fidelity and strong polarization correlation. We expect this approach paves the way for future integration of quantum information networks.
RESUMEN
BACKGROUND: The monitoring of immunotherapies is still based on changes in the tumor size in imaging, with a long evaluation period and low sensitivity. PURPOSE: To investigate the effectiveness of diffusion kurtosis imaging (DKI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the therapeutic efficacy of anti-programmed death-1 (PD-1) therapy in a mouse triple negative breast cancer (TNBC) model. STUDY TYPE: Prospective. ANIMAL MODEL: A total of 54 BALB/c mouse subcutaneous 4 T1 transplantation models of TNBC. FIELD STRENGTH/SEQUENCE: A 3.0-T; turbo spin echo (TSE) T2-weighted imaging, DKI with seven b values (0, 500, 1000, 1500, 2000, 2500, and 3000 sec/mm2 ) and T1-twist DCE acquisition series. ASSESSMENT: DKI and DCE-MRI parameters were evaluated by two radiologists independently. Regions of interest (ROIs) were drawn manually on the maximum cross-sectional area of the lesion; care was taken to avoid necrotic areas. The tumor cell density, the CD45 and CD31 levels were analyzed by two pathologists. STATISTICAL TESTS: The two-tailed unpaired t-test, Mann-Whitney U test, Fisher's exact test and Pearson correlation coefficient were performed. A P < 0.05 was considered statistically significant. RESULTS: The apparent diffusion coefficient (ADC), mean diffusivity (MD), Ktrans and Kep values were significantly different between the two groups at each time point after treatment. There were significant differences in the mean kurtosis (MK) and Ve values between the two groups at 5 and 10 days after treatment but no significant differences at 15 days (P = 0.317 and 0.183, respectively). The ADC and MD values were significantly correlated with tumor cell density (ADC, r = -0.833; MD, r = 0.890) and the CD45 level (ADC, r = 0.720; MD, r = 0.718). The Ktrans and Kep values were significantly correlated with the CD31 level (Ktrans , r = 0.820; Kep , r = 0.683). DATA CONCLUSION: DKI and DCE-MRI could reflect the changes in tumor microstructure and tumor tissue vasculature after anti-PD-1 therapy, respectively. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Medios de Contraste/química , Estudios Prospectivos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión TensoraRESUMEN
OBJECTIVE: To systematically investigate the effect of imaging features at different DCE-MRI phases to optimise a radiomics model based on DCE-MRI for the prediction of tumour-infiltrating lymphocyte (TIL) levels in breast cancer. MATERIALS AND METHODS: This study retrospectively collected 133 patients with pathologically proven breast cancer, including 73 patients with low TIL levels and 60 patients with high TIL levels. The volumes of breast cancer lesions were manually delineated on T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and each phase of DCE-MRI, followed by 6250 quantitative feature extractions. The least absolute shrinkage and selection operator (LASSO) method was used to select predictive feature sets for the classifiers. Four models were developed for predicting TILs: (1) single enhanced phase radiomics models; (2) fusion enhanced multi-phase radiomics models; (3) fusion multi-sequence radiomics models; and (4) a combined radiomics-based clinical model. RESULTS: Image features extracted from the delayed phase MRI, especially DCE_Phase 6 (DCE_P6), demonstrated dominant predictive performances over features from other phases. The fusion multi-sequence radiomics model and combined radiomics-based clinical model achieved the highest predictive performances with areas under the curve (AUCs) of 0.934 and 0.950, respectively; however, the differences were not statistically significant. CONCLUSION: The DCE-MRI radiomics model, especially image features extracted from the delayed phases, can help improve the performance in predicting TILs. The radiomics nomogram is effective in predicting TILs in breast cancer. KEY POINTS: ⢠Radiomics features extracted from DCE-MRI, especially delayed phase images, help predict TIL levels in breast cancer. ⢠We developed a nomogram based on MRI to predict TILs in breast cancer that achieved the highest AUC of 0.950.
Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Linfocitos Infiltrantes de Tumor , Imagen por Resonancia Magnética , Nomogramas , Estudios RetrospectivosRESUMEN
BACKGROUND. Gadobenate and gadoxetate show different degrees of intracellular accumulation within hepatocytes, potentially impacting these agents' relative performance for hepatocellular carcinoma (HCC) diagnosis. OBJECTIVE. The purpose of this article was to perform an intraindividual comparison of gadobenate-enhanced MRI and gadoxetate-enhanced MRI for detection of HCC and to assess the impact of inclusion of hepatobiliary phase images on HCC detection for both agents. METHODS. This prospective study enrolled 126 patients (112 men, 14 women; mean age, 52.3 years) at high risk for HCC who consented to undergo two 3-T liver MRI examinations (one using gadobenate [0.05 mmol/kg], one using gadoxetate [0.025 mmol/kg]) separated by 7-14 days. The order of the two contrast agents was randomized. All examinations included postcontrast dynamic and hepatobiliary phase images (120 minutes for gadobenate, 20 minutes for gadoxetate). Three radiologists independently reviewed the gadobenate and gadoxetate examinations in separate sessions and recorded the location of detected observations. Observations were classified using LI-RADS version 2018 and using a LI-RADS modification whereby hepatobiliary phase hypointensity may upgrade observations from category LR-4 to LR-5. Observations classified as LR-5 were considered positive interpretations for HCC. Diagnostic performance for histologically confirmed HCC (n = 96) was assessed. RESULTS. Across readers, sensitivity for HCC for gadobenate versus gadoxetate was 74.0-80.2% versus 54.2-67.7% using dynamic images alone and 82.1-87.4% versus 66.3-81.1% using dynamic and hepatobiliary phase images. For HCCs measuring 1.0-2.0 cm, sensitivity for gadobenate versus gadoxetate was 61.9% (all readers) versus 38.1-57.1% using dynamic images alone and 76.2-85.7% versus 52.4-61.9% using dynamic and hepatobiliary phase images. PPV for HCC ranged from 88.6% to 97.4% across readers, agents, and image sets. CONCLUSION. Sensitivity for HCC was higher for gadobenate than for gadoxetate, whether using dynamic images alone or dynamic and hepatobiliary phase images; the improved sensitivity using gadobenate was more pronounced for small HCCs. Whereas hepatobiliary phase images improved sensitivity for both agents, sensitivity of gadobenate using dynamic images alone compared favorably with that of gadoxetate using dynamic and hepatobiliary phase images. CLINICAL IMPACT. The findings support gadobenate as a preferred agent over gadoxetate when performing liver MRI in patients at high risk for HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos Organometálicos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Medios de Contraste , Femenino , Gadolinio DTPA , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Imagen por Resonancia Magnética/métodos , Masculino , Meglumina , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: Oxidative stress in the intervertebral disc leads to nucleus pulposus (NP) degeneration by inducing cell apoptosis. However, the molecular mechanisms underlying this process remain unclear. Increasing evidence indicates that GSK-3ß is related to cell apoptosis induced by oxidative stress. In this study, we explored whether GSK-3ß inhibition protects human NP cell against apoptosis under oxidative stress. METHODS AND RESULTS: Immunofluorescence staining was used to show the expression of GSK-3ß in human NP cells (NPCs). Flow cytometry, mitochondrial staining and western blot (WB) were used to detect apoptosis of treated NPCs, changes of mitochondrial membrane potential and the expression of mitochondrial apoptosis-related proteins using GSK-3ß specific inhibitor SB216763. Co-Immunoprecipitation (Co-IP) was used to demonstrate the interaction between GSK-3ß and Bcl-2. We delineated the protective effect of GSK-3ß specific inhibitor SB216763 on human NPCs apoptosis induced by oxidative stress in vitro. Further, we showed SB216763 exert the protective effect by preservation of the mitochondrial membrane potential and inhibition of caspase 3/7 activity during oxidative injury. The detailed mechanism underlying the antiapoptotic effect of GSK-3ß inhibition was also studied by analyzing mitochondrial apoptosis pathway in vitro. CONCLUSIONS: We concluded that the GSK-3ß inhibitor SB216763 protected mitochondrial membrane potential to delay nucleus pulposus cell apoptosis by inhibiting the interaction between GSK-3ß and Bcl-2 and subsequently reducing cytochrome c(Cyto-C) release and caspase-3 activation. Together, inhibition of GSK-3ß using SB216763 in NPCs may be a favorable therapeutic strategy to slow intervertebral disc degeneration.
Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Núcleo Pulposo , Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Indoles/farmacología , Maleimidas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismoRESUMEN
AIMS: Dietary protein, as an important macronutrient, widely participates in host growth and metabolism. In this study, effects of different protein levels (14, 20 and 26%) on the gut development, microbial compositions and mucin expressions were studied in C57BL/6 mice. METHODS AND RESULTS: The results showed that body weight and the relative weight of stomach and gut were decreased in low-protein diet-fed mice, whereas high-protein diet significantly reduced the villus length and area of jejunum. Goblet cells number in the jejunum was reduced in the low-protein group, which was reversed by dietary a high-protein diet. In addition, high-protein diet notably reduced microbial diversity and changed the microbial compositions at the phylum level, such as Bacteroides, Proteobacteria, Actinomycetes and Deferribacteres. Furthermore, high-protein diet significantly increased mucin2, mucin3 and mucin4 expressions in the jejunum, but downregulated mucin1, mucin2, mucin4 and TFF3 in the ileum, indicating a tissue-dependent manner. CONCLUSIONS: Together, high-protein diet may impair gut development, microbial balance and mucin system, and a low-protein diet is suggested to promote a healthy lifestyle. SIGNIFICANCE AND IMPACT OF STUDY: Mucin influenced gut development (villus index and goblet cell number) through remodelling gut microbes, as low and high protein levels resulted in contrary expression levels of mucin in jejunum and ileum.