Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Colorectal Dis ; 38(1): 126, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171498

RESUMEN

BACKGROUND AND AIMS: Body composition changes in patients with Crohn's disease (CD) have received increasing attention in recent years. This review aims to describe the changes in body composition in patients with CD on imaging and to analyze and summarize the prognostic value of body composition. METHODS: We systematically searched Web of Science, PubMed, Embase, Cochrane Library, and Medline via OVID for literature published before November 2022, and two researchers independently evaluated the quality of the retrieved literature. RESULTS: A total of 39 publications (32 cohort studies and 7 cross-sectional studies) involving 4219 patients with CD were retrieved. Imaging methods for body composition assessment, including dual-energy X-ray absorptiometry (DXA), computed tomography (CT) and magnetic resonance imaging (MRI), were included in this review. The study found that patients with CD typically have more visceral adipose tissue and less skeletal muscle mass, and the prevalence of sarcopenia and visceral obesity was significantly different in different studies (sarcopenia: 16-100%; visceral obesity: 5.3-30.5%). Available studies suggest that changes in the body composition of CD patients are significantly related to inflammatory status, disease behavior, poor outcomes, and drug efficacy. CONCLUSION: Altered body composition can be a significant predictor of poor outcomes for CD patients. Therefore, the body composition of CD patients may serve as a potential therapeutic target to help optimize disease management strategies in clinical practice.


Asunto(s)
Enfermedad de Crohn , Sarcopenia , Humanos , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/diagnóstico por imagen , Obesidad Abdominal , Estudios Transversales , Composición Corporal
2.
Front Neurol ; 15: 1413795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286806

RESUMEN

Purpose: Machine learning (ML) models were constructed according to non-contrast computed tomography (NCCT) images as well as clinical and laboratory information to assess risk stratification for the occurrence of hemorrhagic transformation (HT) in acute ischemic stroke (AIS) patients. Methods: A retrospective cohort was constructed with 180 AIS patients who were diagnosed at two centers between January 2019 and October 2023 and were followed for HT outcomes. Patients were analyzed for clinical risk factors for developing HT, infarct texture features were extracted from NCCT images, and the radiomics score (Rad-score) was calculated. Then, five ML models were established and evaluated, and the optimal ML algorithm was used to construct the clinical, radiomics, and clinical-radiomics models. Receiver operating characteristic (ROC) curves were used to compare the performance of the three models in predicting HT. Results: Based on the outcomes of the AIS patients, 104 developed HT, and the remaining 76 had no HT. The HT group consisted of 27 hemorrhagic infarction (HI) and 77 parenchymal-hemorrhage (PH). Patients with HT had a greater neutrophil-to-lymphocyte ratio (NLR), baseline National Institutes of Health Stroke Scale (NIHSS) score, infarct volume, and Rad-score and lower Alberta stroke program early CT score (ASPECTS) (all p < 0.01) than patients without HT. The best ML algorithm for building the model was logistic regression. In the training and validation cohorts, the AUC values for the clinical, radiomics, and clinical-radiomics models for predicting HT were 0.829 and 0.876, 0.813 and 0.898, and 0.876 and 0.957, respectively. In subgroup analyses with different treatment modalities, different infarct sizes, and different stroke time windows, the assessment accuracy of the clinical-radiomics model was not statistically meaningful (all p > 0.05), with an overall accuracy of 79.5%. Moreover, this model performed reliably in predicting the PH and HI subcategories, with accuracies of 82.9 and 92.9%, respectively. Conclusion: ML models based on clinical and NCCT radiomics characteristics can be used for early risk evaluation of HT development in AIS patients and show great potential for clinical precision in treatment and prognostic assessment.

3.
Insights Imaging ; 15(1): 115, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735018

RESUMEN

OBJECTIVES: The simplified endoscopic score of Crohn's disease (SES-CD) is the gold standard for quantitatively evaluating Crohn's disease (CD) activity but is invasive. This study aimed to develop and validate a machine learning (ML) model based on dual-energy CT enterography (DECTE) to noninvasively evaluate CD activity. METHODS: We evaluated the activity in 202 bowel segments of 46 CD patients according to the SES-CD score and divided the segments randomly into training set and testing set at a ratio of 7:3. Least absolute shrinkage and selection operator (LASSO) was used for feature selection, and three models based on significant parameters were established based on logistic regression. Model performance was evaluated using receiver operating characteristic (ROC), calibration, and clinical decision curves. RESULTS: There were 110 active and 92 inactive bowel segments. In univariate analysis, the slope of spectral curve in the venous phases (λHU-V) has the best diagnostic performance, with an area under the ROC curve (AUC) of 0.81 and an optimal threshold of 1.975. In the testing set, the AUC of the three models established by the 7 variables to differentiate CD activity was 0.81-0.87 (DeLong test p value was 0.071-0.766, p > 0.05), and the combined model had the highest AUC of 0.87 (95% confidence interval (CI): 0.779-0.959). CONCLUSIONS: The ML model based the DECTE can feasibly evaluate CD activity, and DECTE parameters provide a quantitative analysis basis for evaluating specific bowel activities in CD patients. CRITICAL RELEVANCE STATEMENT: The machine learning model based on dual-energy computed tomography enterography can be used for evaluating Crohn's disease activity noninvasively and quantitatively. KEY POINTS: Dual-energy CT parameters are related to Crohn's disease activity. Three machine learning models effectively evaluated Crohn's disease activity. Combined models based on conventional and dual-energy CT have the best performance.

4.
Front Nutr ; 10: 1251448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674885

RESUMEN

Background: The disease activity status and behavior of Crohn's disease (CD) can reflect the severity of the disease, and changes in body composition are common in CD patients. Aims: The aim of this study was to investigate the relationship between body composition parameters and disease severity in CD patients treated with infliximab (IFX). Methods: Patients with CD assessed with the simple endoscopic score (SES-CD) and were treated with IFX were retrospectively collected, and body composition parameters at the level of the 3rd lumbar vertebrae were calculated from computed tomography (CT) scans of the patients. The correlation of patients' body composition parameters with disease activity status and disease behavior was analyzed, and the diagnostic value of the relevant parameters was assessed using receiver operating characteristic (ROC) curves. Results: A total of 106 patients were included in this study. There were significant differences in the subcutaneous adiposity index (SAI) (p = 0.010), the visceral adiposity index (VAI) (p < 0.001), the skeletal muscle mass index (SMI) (p < 0.001), and decreased skeletal muscle mass (p < 0.001) among patients with different activity status. After Spearman and multivariate regression analysis, SAI (p = 0.006 and p = 0.001), VAI (p < 0.001 and p < 0.001), and SMI (p < 0.001and p = 0.007) were identified as independent correlates of disease activity status (both disease activity and moderate-to-severe activity), with disease activity status independently positively correlated with SAI and SMI and independently negatively correlated with VAI. In determining the disease activity and moderate-to-severe activity status, SMI performed best relative to SAI and VAI, with areas under the ROC curve of 0.865 and 0.801, respectively. SAI (p = 0.015), SMI (p = 0.011) and decreased skeletal muscle mass (p = 0.027) were significantly different between different disease behavior groups (inflammatory disease behavior group, complex disease behavior group) but were not independent correlates (p > 0.05). Conclusion: Body composition parameters of CD patients treated with IFX correlate with the endoscopic disease severity, and SMI can be used as a reliable indicator of disease activity status.

5.
Front Neurosci ; 16: 1002717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213752

RESUMEN

Objective: To develop and validate a model based on the radiomics features of the infarct areas on non-contrast-enhanced CT to predict hemorrhagic transformation (HT) in acute ischemic stroke. Materials and methods: A total of 118 patients diagnosed with acute ischemic stroke in two centers from January 2019 to February 2022 were included. The radiomics features of infarcted areas on non-contrast-enhanced CT were extracted using 3D-Slicer. A univariate analysis and the least absolute shrinkage and selection operator (LASSO) were used to select features, and the radiomics score (Rad-score) was then constructed. The predictive model of HT was constructed by analyzing the Rad-score and clinical and imaging features in the training cohort, and it was verified in the validation cohort. The model was evaluated with the receiver operating characteristic curve, calibration curve and decision curve, and the prediction performance of the model in different scenarios was further discussed hierarchically. Results: Of the 118 patients, 52 developed HT, including 21 cases of hemorrhagic infarct (HI) and 31 cases of parenchymal hematoma (PH). The Rad-score was constructed from five radiomics features and was the only independent predictor for HT. The predictive model was constructed from the Rad-score. The area under the curve (AUCs) of the model for predicting HT in the training and validation cohorts were 0.845 and 0.750, respectively. Calibration curve and decision curve analyses showed that the model performed well. Further analysis found that the model predicted HT for different infarct sizes or treatment methods in the training and validation cohorts with 78.3 and 71.4% accuracy, respectively. For all samples, the model predicted an AUC of 0.754 for HT in patients within 4.5 h since stroke onset, and predicted an AUC of 0.648 for PH. Conclusion: This model, which was based on CT radiomics features, could help to predict HT in the setting of acute ischemic stroke for any infarct size and provide guiding suggestions for clinical treatment and prognosis evaluation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA