Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cell Physiol ; 237(6): 2703-2712, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35147977

RESUMEN

Cilia assembly and centriole duplication are closely coordinated with cell cycle progression, and inhibition of cilia disassembly impedes cell cycle progression. The centrosomal protein trichoplein (TCHP) has been shown to promote cell cycle progression in the G1 -S phase by disassembling cilia. In this study, we showed that deletion of TCHP not only prevented the progression to the S phase but also resulted in cell cycle exit and entrance into G0 phase. Surprisingly, we found that loss of TCHP-induced G0 arrest could not be reversed by blocking the assembly of cilia. In cells without IFT20 or CEP164, two genes encoding key factors for ciliogenesis, depletion of TCHP still led to G0 arrest. Mechanistically, we also found that TCHP depletion-induced cell cycle arrest was not mediated through a centrosome surveillance mechanism, but inhibition of Rb or concomitant inhibition of both Rb and p53 signaling pathways was required to reverse the cell cycle phenotype. In conclusion, our study provides new insights into the function of TCHP in cell cycle progression.


Asunto(s)
Centrosoma , Cilios , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Centriolos , Centrosoma/metabolismo , Cilios/metabolismo , Fase S
2.
Nature ; 502(7470): 254-7, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24089205

RESUMEN

The primary cilium is a microtubule-based organelle that functions in sensory and signalling pathways. Defects in ciliogenesis can lead to a group of genetic syndromes known as ciliopathies. However, the regulatory mechanisms of primary ciliogenesis in normal and cancer cells are incompletely understood. Here we demonstrate that autophagic degradation of a ciliopathy protein, OFD1 (oral-facial-digital syndrome 1), at centriolar satellites promotes primary cilium biogenesis. Autophagy is a catabolic pathway in which cytosol, damaged organelles and protein aggregates are engulfed in autophagosomes and delivered to lysosomes for destruction. We show that the population of OFD1 at the centriolar satellites is rapidly degraded by autophagy upon serum starvation. In autophagy-deficient Atg5 or Atg3 null mouse embryonic fibroblasts, OFD1 accumulates at centriolar satellites, leading to fewer and shorter primary cilia and a defective recruitment of BBS4 (Bardet-Biedl syndrome 4) to cilia. These defects are fully rescued by OFD1 partial knockdown that reduces the population of OFD1 at centriolar satellites. More strikingly, OFD1 depletion at centriolar satellites promotes cilia formation in both cycling cells and transformed breast cancer MCF7 cells that normally do not form cilia. This work reveals that removal of OFD1 by autophagy at centriolar satellites represents a general mechanism to promote ciliogenesis in mammalian cells. These findings define a newly recognized role of autophagy in organelle biogenesis.


Asunto(s)
Autofagia , Centriolos/metabolismo , Cilios/fisiología , Proteínas/metabolismo , Animales , Autofagia/genética , Línea Celular , Cilios/genética , Cilios/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células MCF-7 , Ratones , Transporte de Proteínas , Proteínas/genética
3.
Nat Commun ; 14(1): 1687, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973243

RESUMEN

Dysfunction of cell cycle control and defects of primary ciliogenesis are two features of many cancers. Whether these events are interconnected and the driving mechanism coordinating them remains elusive. Here, we identify an actin filament branching surveillance system that alerts cells of actin branching insufficiency and regulates cell cycle progression, cytokinesis and primary ciliogenesis. We find that Oral-Facial-Digital syndrome 1 functions as a class II Nucleation promoting factor to promote Arp2/3 complex-mediated actin branching. Perturbation of actin branching promotes OFD1 degradation and inactivation via liquid-to-gel transition. Elimination of OFD1 or disruption of OFD1-Arp2/3 interaction drives proliferating, non-transformed cells into quiescence with ciliogenesis by an RB-dependent mechanism, while it leads oncogene-transformed/cancer cells to incomplete cytokinesis and irreversible mitotic catastrophe via actomyosin ring malformation. Inhibition of OFD1 leads to suppression of multiple cancer cell growth in mouse xenograft models. Thus, targeting OFD1-mediated actin filament branching surveillance system provides a direction for cancer therapy.


Asunto(s)
Actinas , Citocinesis , Animales , Ratones , Humanos , Citocinesis/fisiología , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo
4.
Acta Pharm Sin B ; 13(2): 834-851, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36873190

RESUMEN

Microglial surveillance plays an essential role in clearing misfolded proteins such as amyloid-beta, tau, and α-synuclein aggregates in neurodegenerative diseases. However, due to the complex structure and ambiguous pathogenic species of the misfolded proteins, a universal approach to remove the misfolded proteins remains unavailable. Here, we found that a polyphenol, α-mangostin, reprogrammed metabolism in the disease-associated microglia through shifting glycolysis to oxidative phosphorylation, which holistically rejuvenated microglial surveillance capacity to enhance microglial phagocytosis and autophagy-mediated degradation of multiple misfolded proteins. Nanoformulation of α-mangostin efficiently delivered α-mangostin to microglia, relieved the reactive status and rejuvenated the misfolded-proteins clearance capacity of microglia, which thus impressively relieved the neuropathological changes in both Alzheimer's disease and Parkinson's disease model mice. These findings provide direct evidences for the concept of rejuvenating microglial surveillance of multiple misfolded proteins through metabolic reprogramming, and demonstrate nanoformulated α-mangostin as a potential and universal therapy against neurodegenerative diseases.

5.
Cell Death Differ ; 30(3): 647-659, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36182990

RESUMEN

Inflammation leads to systemic osteoporosis or local bone destruction, however, the underlying molecular mechanisms are still poorly understood. In this study, we report that PRL2 is a negative regulator of osteoclastogenesis and bone absorption. Mice with PRL2 deficiency exhibit a decrease in bone volume and an increase in osteoclast numbers. PRL2 negatively regulates RANKL-induced reactive oxygen species production through the activation of RAC1, thus PRL2 deficient osteoclast precursors have both increased osteoclast differentiation ability and bone resorptive capacity. During inflammation, oxidized PRL2 is a selected substrate of HSC70 and conditions of oxidative stress trigger rapid degradation of PRL2 by HSC70 mediated endosomal microautophagy and chaperone-mediated autophagy. Ablation of PRL2 in mouse models of inflammatory bone disease leads to an increase in the number of osteoclasts and exacerbation of bone damage. Moreover, reduced PRL2 protein levels in peripheral myeloid cells are highly correlated with bone destruction in a mouse arthritis model and in human rheumatoid arthritis, while the autophagy inhibitor hydroxychloroquine blocked inflammation-induced PRL2 degradation and bone destruction in vivo. Therefore, our findings identify PRL2 as a new regulator in osteoimmunity, providing a link between inflammation and osteoporosis. As such, PRL2 is a potential therapeutic target for inflammatory bone disease and inhibition of HSC70 mediated autophagic degradation of PRL2 may offer new therapeutic tools for the treatment of inflammatory bone disease.


Asunto(s)
Resorción Ósea , Osteoporosis , Animales , Humanos , Ratones , Autofagia , Resorción Ósea/metabolismo , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Osteoporosis/metabolismo , Ligando RANK/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo
6.
Nat Commun ; 14(1): 6360, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821429

RESUMEN

The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is required for autophagosome-lysosome fusion in mammals, yet reconstituting the mammalian HOPS complex remains a challenge. Here we propose a "hook-up" model for mammalian HOPS complex assembly, which requires two HOPS sub-complexes docking on membranes via membrane-associated Rabs. We identify Rab39A as a key small GTPase that recruits HOPS onto autophagic vesicles. Proper pairing with Rab2 and Rab39A enables HOPS complex assembly between proteoliposomes for its tethering function, facilitating efficient membrane fusion. GTP loading of Rab39A is important for the recruitment of HOPS to autophagic membranes. Activation of Rab39A is catalyzed by C9orf72, a guanine exchange factor associated with amyotrophic lateral sclerosis and familial frontotemporal dementia. Constitutive activation of Rab39A can rescue autophagy defects caused by C9orf72 depletion. These results therefore reveal a crucial role for the C9orf72-Rab39A-HOPS axis in autophagosome-lysosome fusion.


Asunto(s)
Fusión de Membrana , Animales , Autofagia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Catálisis , Guanosina Trifosfato/metabolismo , Mamíferos/metabolismo , Fusión de Membrana/fisiología , Vacuolas/metabolismo
7.
Cell Rep ; 41(12): 111837, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543126

RESUMEN

SAG/RBX2 is an E3 ligase, whereas SHOC2 is a RAS-RAF positive regulator. In this study, we address how Sag-Shoc2 crosstalk regulates pancreatic tumorigenesis induced by KrasG12D. Sag deletion increases the size of pancreas and causes the conversion of murine pancreatic intraepithelial neoplasms (mPanINs) to neoplastic cystic lesions with a mechanism involving Shoc2 accumulation, suggesting that Sag determines the pathological process via targeting Shoc2. Shoc2 deletion significantly inhibits pancreas growth, mPanIN formation, and acinar cell transdifferentiation, indicating that Shoc2 is essential for KrasG12D-induced pancreatic tumorigenesis. Likewise, in a primary acinar 3D culture, Sag deletion inhibits acinar-to-ductal transdifferentiation, while Shoc2 deletion significantly reduces the duct-like structures. Mechanistically, SAG is an E3 ligase that targets SHOC2 for degradation to affect both Mapk and mTorc1 pathways. Shoc2 deletion completely rescues the phenotype of neoplastic cystic lesions induced by Sag deletion, indicating physiological relevance of the Sag-Shoc2 crosstalk. Thus, the Sag-Shoc2 axis specifies the pancreatic tumor types induced by KrasG12D.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Transducción de Señal , Neoplasias Pancreáticas/patología , Páncreas/metabolismo , Carcinoma in Situ/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Carcinogénesis , Carcinoma Ductal Pancreático/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transformación Celular Neoplásica/patología
8.
J Cell Biol ; 221(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35510944

RESUMEN

The stimulator of interferon genes (STING) plays a critical role in innate immunity. Emerging evidence suggests that STING is important for DNA or cGAMP-induced non-canonical autophagy, which is independent of a large part of canonical autophagy machineries. Here, we report that, in the absence of STING, energy stress-induced autophagy is upregulated rather than downregulated. Depletion of STING in Drosophila fat cells enhances basal- and starvation-induced autophagic flux. During acute exercise, STING knockout mice show increased autophagy flux, exercise endurance, and altered glucose metabolism. Mechanistically, these observations could be explained by the STING-STX17 interaction. STING physically interacts with STX17, a SNARE that is essential for autophagosome biogenesis and autophagosome-lysosome fusion. Energy crisis and TBK1-mediated phosphorylation both disrupt the STING-STX17 interaction, allow different pools of STX17 to translocate to phagophores and mature autophagosomes, and promote autophagic flux. Taken together, we demonstrate a heretofore unexpected function of STING in energy stress-induced autophagy through spatial regulation of autophagic SNARE STX17.


Asunto(s)
Autofagia , Metabolismo Energético , Lisosomas , Proteínas de la Membrana , Proteínas Qa-SNARE , Animales , Autofagosomas/metabolismo , Drosophila , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Condicionamiento Físico Animal , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
9.
Protein Cell ; 10(10): 726-744, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30850948

RESUMEN

The primary cilium is a microtubule-based sensory organelle. The molecular mechanism that regulates ciliary dynamics remains elusive. Here, we report an unexpected finding that MLN4924, a small molecule inhibitor of NEDD8-activating enzyme (NAE), blocks primary ciliary formation by inhibiting synthesis/assembly and promoting disassembly. This is mainly mediated by MLN4924-induced phosphorylation of AKT1 at Ser473 under serum-starved, ciliary-promoting conditions. Indeed, pharmaceutical inhibition (by MK2206) or genetic depletion (via siRNA) of AKT1 rescues MLN4924 effect, indicating its causal role. Interestingly, pAKT1-Ser473 activity regulates both ciliary synthesis/assembly and disassembly in a MLN4924 dependent manner, whereas pAKT-Thr308 determines the ciliary length in MLN4924-independent but VHL-dependent manner. Finally, MLN4924 inhibits mouse hair regrowth, a process requires ciliogenesis. Collectively, our study demonstrates an unexpected role of a neddylation inhibitor in regulation of ciliogenesis via AKT1, and provides a proof-of-concept for potential utility of MLN4924 in the treatment of human diseases associated with abnormal ciliogenesis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Cilios/efectos de los fármacos , Ciclopentanos/farmacología , Cabello/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/farmacología , Animales , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL
10.
Autophagy ; 15(10): 1774-1786, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30957628

RESUMEN

Multiple sources contribute membrane and protein machineries to construct functional macroautophagic/autophagic structures. However, the underlying molecular mechanisms remain elusive. Here, we show that RAB2 connects the Golgi network to autophagy pathway by delivering membrane and by sequentially engaging distinct autophagy machineries. In unstressed cells, RAB2 resides primarily in the Golgi apparatus, as evidenced by its interaction and colocalization with GOLGA2/GM130. Importantly, autophagy stimuli dissociate RAB2 from GOLGA2 to interact with ULK1 complex, which facilitates the recruitment of ULK1 complex to form phagophores. Intriguingly, RAB2 appears to modulate ULK1 kinase activity to propagate signals for autophagosome formation. Subsequently, RAB2 switches to interact with autophagosomal RUBCNL/PACER and STX17 to further specify the recruitment of HOPS complex for autolysosome formation. Together, our study reveals a multivalent pathway in bulk autophagy regulation, and provides mechanistic insights into how the Golgi apparatus contributes to the formation of different autophagic structures. Abbreviations: ACTB: actin beta; ATG9: autophagy related 9A; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BCAP31: B cell receptor associated protein 31; BECN1: beclin 1; Ctrl: control; CQ: chloroquine; CTSD: cathepsin D; DMSO: dimethyl sulfoxide; EBSS: Earle's balanced salt solution; EEA1: early endosome antigen 1; GDI: guanine nucleotide dissociation inhibitor; GFP: green fluorescent protein; GOLGA2: golgin A2; HOPS: homotypic fusion and protein sorting complex; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LC3: microtubule-associated protein 1 light chain 3; OE: overexpression; PtdIns3K: class III phosphatidylinositol 3-kinase; SQSTM1/p62: sequestosome 1; RAB2: RAB2A, member RAS oncogene family; RAB7: RAB7A, member RAS oncogene family; RAB11: RAB11A, member RAS oncogene family; RUBCNL/PACER: rubicon like autophagy enhancer; STX17: syntaxin 17; TBC1D14: TBC1 domain family member 14; TFRC: transferrin receptor; TGOLN2: trans-golgi network protein 2; TUBB: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VPS41: VPS41, HOPS complex subunit; WB: western blot; WT: wild type; YPT1: GTP-binding protein YPT1.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/genética , Lisosomas/metabolismo , Proteína de Unión al GTP rab2/fisiología , Animales , Células Cultivadas , Células Eucariotas/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/genética , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de Unión al GTP rab2/genética
12.
Sci Rep ; 6: 24218, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27063292

RESUMEN

MLN4924 is a recently discovered small molecule inhibitor of NEDD8-Activating Enzyme (NAE). Because cullin RING ligase (CRL), the largest family of E3 ubiquitin ligase, requires cullin neddylation for its activity, MLN4924, therefore, acts as an indirect inhibitor of CRL by blocking cullin neddylation. Given that CRLs components are up-regulated, whereas neddylation modification is over-activated in a number of human cancers, MLN4924 was found to be effective in growth suppression of cancer cells. Whether MLN4924 is effective against gastric cancer cells, however, remains elusive. Here we showed that in gastric cancer cells, MLN4924 rapidly inhibited cullin 1 neddylation and remarkably suppressed growth and survival as well as migration in a dose-and time-dependent manner. Mechanistic studies in combination with siRNA knockdown-based rescue experiments revealed that MLN4924 induced the accumulation of a number of CRL substrates, including CDT1/ORC1, p21/p27, and PHLPP1 to trigger DNA damage response and induce growth arrest at the G2/M phase, to induce senescence, as well as autophagy, respectively. MLN4924 also significantly suppressed migration by transcriptionally activating E-cadherin and repressing MMP-9. Taken together, our study suggest that neddylation modification and CRL E3 ligase are attractive gastric cancer targets, and MLN4924 might be further developed as a potent therapeutic agent for the treatment of gastric cancer.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteínas Cullin/metabolismo , Ciclopentanos/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Pirimidinas/farmacología , Autofagia/efectos de los fármacos , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína NEDD8 , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/antagonistas & inhibidores , Ubiquitinas/metabolismo
13.
Autophagy ; 10(2): 379-81, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24343661

RESUMEN

Autophagy delivers many proteins and cellular components to the lysosome for degradation via selective or nonselective mechanisms. By controlling the stability of defined protein factors, autophagy might regulate cellular processes in a precise and finely-tuned manner. In this study, we demonstrated that autophagy positively regulates the biogenesis of the primary cilium, an antenna-like organelle that senses the environment and transduces signals. Defects in the function or structure of cilia cause a number of human diseases called "ciliopathies." We found that the autophagosome membrane anchored protein LC3 interacts with OFD1 (oral-facial-digital syndrome 1) and removes it from the centriolar satellite upon serum starvation to initiate primary cilium biogenesis. OFD1 regulation and primary cilium formation are defective in autophagy-deficient cells, and reducing OFD1 protein levels through RNA interference rescues primary cilium formation. More strikingly, knockdown of OFD1 induces primary cilium formation in unstressed cells as well as in a human breast cancer cell that was previously reported to have lost the ability to form primary cilia. These findings therefore suggest an unexpected link among autophagy, ciliogenesis, ciliopathy, and cancers.


Asunto(s)
Autofagia/genética , Autofagia/fisiología , Cilios , Proteínas/metabolismo , Interferencia de ARN , Animales , Línea Celular Tumoral , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica/genética
14.
Autophagy ; 6(5): 614-21, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20495340

RESUMEN

The accumulation of ubiquitin-positive protein aggregates has been implicated in the pathogenesis of neurodegenerative diseases, heart disease and diabetes. Emerging evidence indicates that the autophagy lysosomal pathway plays a critical role in the clearance of ubiquitin aggregates, a process that is mediated by the ubiquitin binding protein p62. In addition to binding ubiquitin, p62 also interacts with LC3 and transports ubiquitin conjugates to autophagosomes for degradation. The exact regulatory mechanism of this process is still largely unknown. Here we report the identification of Keap1 as a binding partner for p62 and LC3. Keap1 inhibits Nrf2 by sequestering it in the cytosol and preventing its translocation to the nucleus and activation of genes involved in the oxidative stress response. In this study, we found that Keap1 interacts with p62 and LC3 in a stress-inducible manner, and that Keap1 colocalizes with LC3 and p62 in puromycin-induced ubiquitin aggregates. Moreover, p62 serves as a bridge between Keap1 and ubiquitin aggregates and autophagosomes. Finally, genetic ablation of Keap1 leads to the accumulation of ubiquitin aggregates, increased cytotoxicity of misfolded protein aggregates, and defective activation of autophagy. Therefore, this study assigns a novel positive role of Keap1 in upregulating p62-mediated autophagic clearance of ubiquitin aggregates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Eliminación de Gen , Células HEK293 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Metabolismo de los Lípidos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Unión Proteica , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Proteína Sequestosoma-1 , Estrés Fisiológico , Factor de Transcripción TFIIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA