Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ecotoxicol Environ Saf ; 253: 114705, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863159

RESUMEN

Deoxynivalenol (DON), as a widespread Fusarium mycotoxin in cereals, food products, and animal feed, is detrimental to both human and animal health. The liver is not only the primary organ responsible for DON metabolism but also the principal organ affected by DON toxicity. Taurine is well known to display various physiological and pharmacological functions due to its antioxidant and anti-inflammatory properties. However, the information regarding taurine supplementation counteracting DON-induced liver injury in piglets is still unclear. In our work, twenty-four weaned piglets were subjected to four groups for a 24-day period, including the BD group (a basal diet), the DON group (3 mg/kg DON-contaminated diet), the DON+LT group (3 mg/kg DON-contaminated diet + 0.3% taurine), and the DON+HT group (3 mg/kg DON-contaminated diet + 0.6% taurine). Our findings indicated that taurine supplementation improved growth performance and alleviated DON-induced liver injury, as evidenced by the reduced pathological and serum biochemical changes (ALT, AST, ALP, and LDH), especially in the group with the 0.3% taurine. Taurine could counteract hepatic oxidative stress in piglets exposed to DON, as it reduced ROS, 8-OHdG, and MDA concentrations and improved the activity of antioxidant enzymes. Concurrently, taurine was observed to upregulate the expression of key factors involved in mitochondrial function and the Nrf2 signaling pathway. Furthermore, taurine treatment effectively attenuated DON-induced hepatocyte apoptosis, as verified through the decreased proportion of TUNEL-positive cells and regulation of the mitochondria-mediated apoptosis pathway. Finally, the administration of taurine was able to reduce liver inflammation due to DON, by inactivating the NF-κB signaling pathway and declining the production of pro-inflammatory cytokines. In summary, our results implied that taurine effectively improved DON-induced liver injury. The underlying mechanism should be that taurine restored mitochondrial normal function and antagonized oxidative stress, thereby reducing apoptosis and inflammatory responses in the liver of weaned piglets.


Asunto(s)
Antioxidantes , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Animales , Humanos , Porcinos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Taurina/farmacología , Taurina/uso terapéutico , Taurina/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado , Estrés Oxidativo , Inflamación/metabolismo , Suplementos Dietéticos , Apoptosis , Mitocondrias/metabolismo , Alimentación Animal/análisis
2.
Ecotoxicol Environ Saf ; 251: 114534, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36646009

RESUMEN

Mini Chinese cabbage (Brassica rapa L. ssp. Pekinensis) plays an important role in the supply of summer vegetables on the plateau in western China. In recent years, tip-burn has seriously affected the yield, quality and commodity value of mini Chinese cabbage. Calcium (Ca2+) deficiency is a key inducer of tip-burn. As a new type plant hormone, brassinolide (BR) is involved in regulating a variety of biotic and abiotic stresses. To explore the alleviation role of BR in tip-burn caused by Ca2+ deficiency, a hydroponic experiment was conducted to study the relationship between BR and Ca2+ absorption and transport. The results showed that foliar spraying with 0.5 µM BR significantly reduced tip-burn incidence rate and disease index of mini Chinese cabbage caused by Ca2+ deficiency. Moreover, the dynamic monitoring results of tip-burn incidence rate showed that the value reached the highest on the ninth day after treatment. BR promoted the Ca2+ transport from roots to shoots and from outer leaves to inner leaves by increasing the activities of Ca2+-ATPase and H+-ATPase as well as the total ATP content, which provided power for Ca2+ transport. In addition, exogenous BR upregulated the relative expression levels of BrACA4, BrACA11, BrECA1, BrECA3, BrECA4, BrCAX1, BrCAS and BrCRT2, whereas Ca2+ deficiency induced down-regulation. In conclusion, exogenous BR can alleviate the Ca2+-deficiency induced tip-burn of mini Chinese cabbage by promoting the transport and distribution of Ca2+.


Asunto(s)
Brassica rapa , Brassica , Brassica rapa/metabolismo , Calcio/metabolismo , Brasinoesteroides/farmacología , Perfilación de la Expresión Génica , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203005

RESUMEN

Growing pumpkins in controlled environments, such as greenhouses, has become increasingly important due to the potential to optimise yield and quality. However, achieving optimal environmental conditions for pumpkin cultivation requires precise monitoring and control, which can be facilitated by modern sensor technologies. The objective of this study was to determine the optimal placement of sensors to determine the influence of external parameters on the maturity of pumpkins. The greenhouse used in the study consisted of a plastic film for growing pumpkins. Five different sensors labeled from A1 to A5 measured the air temperature, humidity, soil temperature, soil humidity, and illumination at five different locations. We used two methods, error-based sensor placement and entropy-based sensor placement, to evaluate optimisation. We selected A3 sensor locations where the monitored data were close to the reference value, i.e., the average data of all measurement locations and parameters. Using this method, we selected sensor positions to monitor the influence of external parameters on the maturity of pumpkins. These methods enable the determination of optimal sensor locations to represent the entire facility environment and detect areas with significant environmental disparities. Our study provides an accurate measurement of the internal environment of a greenhouse and properly selects the base installation locations of sensors in the pumpkin greenhouse.


Asunto(s)
Cucurbita , Entropía , Ambiente Controlado , Humedad , Suelo
4.
BMC Plant Biol ; 22(1): 329, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804328

RESUMEN

A biosynthetic precursor of tetrapyrrol, 5-aminolevulinic acid (ALA), is widely used in agricultural production, as an exogenous regulatory substance that effectively regulates plant growth. Previous studies have shown that heme and chlorophyll accumulate in plants under salt stress, when treated with exogenous ALA. In this study, we explored the regulatory role of heme in plants, by spraying 25 mg L-1 ALA onto the leaves of cucumber seedlings treated with heme synthesis inhibitor (2,2'-dipyridyl, DPD) and heme scavenger (hemopexin, Hx), under 50 mmol L-1 NaCl stress. The results showed that NaCl alone and DPD + Hx treatments to cucumber seedlings subjected to salt stress adversely affected their growth, by decreasing biomass accumulation, root activity, and root morphology. In addition, these treatments induced an increase in membrane lipid oxidation, as well as enhancement of anti-oxidase activities, proline content, and glutamate betaine. However, exogenous ALA application increased the plant growth and root architecture indices under NaCl stress, owing to a lack of heme in the seedlings. In addition, cucumber seedlings treated with DPD and Hx showed inhibition of growth under salt stress, but exogenous ALA effectively improved cucumber seedling growth as well as the physiological characteristics; moreover, the regulation of ALA in plants was weakened when heme synthesis was inhibited. Heme biosynthesis and metabolism genes, HEMH and HO1, which are involved in the ALA metabolic pathway, were upregulated under salinity conditions, when ferrochelatase activity was inhibited. Application of exogenous ALA increased the heme content in the leaves. Thus, exogenous ALA may supplement the substrates for heme synthesis. These results indicated that heme plays a vital role in the response of plants to salinity stress. In conclusion, heme is involved in ALA-mediated alleviation of damage caused to cucumber seedlings and acts as a positive regulator of plant adaption.


Asunto(s)
Cucumis sativus , Plantones , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/farmacología , Antioxidantes/metabolismo , Cucumis sativus/genética , Hemo/metabolismo , Hemo/farmacología , Hojas de la Planta/metabolismo , Estrés Salino , Tolerancia a la Sal/genética , Plantones/genética , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética
5.
Ecotoxicol Environ Saf ; 217: 112248, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901782

RESUMEN

Melatonin (Mel), a powerful antioxidant that has the ability to regulate physiological and biochemical processes in plants under abiotic stresses. However, its roles in pesticide detoxification is poorly understood. Herein, selecting leaf spraying insecticide imidacloprid (IMD) as the model, we demonstrated the detoxification mechanism underlying root pretreatment of Mel on IMD in cucumber. IMD treatment affected the primary light conversion efficiency of photosystem II (Fv/Fm), reduced the quantum yield, and increased hydrogen peroxide and superoxide anions contents as well as the levels of membrane lipid peroxidation, indicating that excessive IMD treatment induces oxidative stress. Nonetheless, by increasing the appropriate levels of exogenous Mel, the photosynthesis of cucumber under IMD treatment reached the control levels, effectively removing reactive oxygen species. Furthermore, the content and ratio of ascorbate (AsA) and glutathione (GSH) were decreased under IMD treatment; Mel treatment enhanced the AsA/DHA and GSH/GSSG ratios, as well as the activities of MDHAR, DHAR and GR, suggesting that Mel could alleviate oxidative stress of cucumber treated with IMD by regulating the ascorbic acid-glutathione cycle. Importantly, IMD degradation rate and glutathione S-transferase (GST) activity increased after Mel treatment. The levels of transcripts encoding antioxidant enzymes GPX and GST (GST1,2 and 3) were also increased, indicating that Mel accelerated IMD degradation. These results suggest that Mel plays an important role in the detoxification of IMD by promoting GST activity and transcription and the AsA-GSH cycle, thus providing an approach for plants to reduce IMD residue through the plant's own detoxification mechanism.


Asunto(s)
Cucumis sativus/fisiología , Glutatión/metabolismo , Insecticidas/toxicidad , Melatonina/metabolismo , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Cucumis sativus/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Peróxido de Hidrógeno/metabolismo , Inactivación Metabólica/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
6.
Ecotoxicol Environ Saf ; 227: 112879, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34649142

RESUMEN

Cinnamic acid (CA), one of the main autotoxins secreted by cucumber roots during continuous cropping, inhibits plant growth and reduces yield. Silicon (Si) is an environmentally friendly element that alleviates abiotic stresses in plants, but the mechanism underlying its resistance to autotoxicity remain unclear. Here, we used 0.8 mmol L-1 CA to study the effects of Si application on the growth, chlorophyll fluorescence, and ascorbate-glutathione (AsA-GSH) cycle of cucumber seedlings under CA inducing conditions. Our results indicated that CA significantly induced photoinhibition and overaccumulation of reactive oxygen species (ROS), thereby inhibiting cucumber growth. Treatment with 1.0 mmol L-1 Si improved plant height, stem diameter and biomass accumulation, and protected the photosynthetic electron transport function of photosystem II in the presence of CA. Similarly, Si application maintained the ROS status by increasing ascorbate (AsA) and glutathione (GSH) production, as well as the ratios of AsA/DHA and GSH/GSSG in both leaves and roots during CA stress. In addition, Si application in CA-treated seedlings enhanced the activity of key enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and the transcription of several enzyme genes (CsAPX, CsMDHAR and CsGR) from the AsA-GSH cycle. These results suggest that exogenous Si enhances CA tolerance in cucumber seedlings by protecting photosystem II activity, upregulating AsA-GSH pathway, and reducing ROS levels.


Asunto(s)
Cucumis sativus , Silicio , Cinamatos , Glutatión , Complejo de Proteína del Fotosistema II , Hojas de la Planta
7.
Molecules ; 26(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34500788

RESUMEN

The biological activities of the primary metabolites and secondary metabolites of 69 green cabbage varieties were tested. The LC-MS detection method was used to determine the content of 19 free amino acids (lysine, tryptophan, phenylalanine, methionine, threonine, isoleucine, leucine, valine, arginine, asparagine, glycine, proline, tyrosine, glutamine, alanine, aspartic acid, serine, and glutamate). The content of 10 polyphenols (chlorogenic acid, gallic acid, 4-coumaric acid, ferulic acid, gentisic acid, cymarin, erucic acid, benzoic acid, rutin, and kaempferol) was determined by the HPLC detection method. Considering the complexity of the data obtained, variance analysis, diversity analysis, correlation analysis, hierarchical cluster analysis (HCA), and principal component analysis (PCA) were used to process and correlate amino acid or polyphenol data, respectively. The results showed that there were significant differences between the different amino acids and polyphenols of the 69 cabbage varieties. The most abundant amino acids and polyphenols were Glu and rutin, respectively. Both amino acids and polyphenols had a high genetic diversity, and multiple groups of significant or extremely significant correlations. The 69 cabbage varieties were divided into two groups, according to 19 amino acid indexes, by PCA. Among them, seven varieties with high amino acid content all fell into the fourth quadrant. The HCA of amino acids also supports this view. Based on 10 polyphenols, the 69 cabbage varieties were divided into two groups by HCA. Based on 29 indexes of amino acids and polyphenols, 69 cabbage varieties were evaluated and ranked by PCA. Therefore, in this study, cabbage varieties were classified in accordance with the level of amino acids and polyphenols, which provided a theoretical basis for the genetic improvement of nutritional quality in cabbage.


Asunto(s)
Aminoácidos/análisis , Brassica/química , Polifenoles/análisis , Análisis Multivariante
8.
BMC Plant Biol ; 20(1): 480, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087071

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) is a gas signal molecule involved in regulating plants tolerance to heavy metals stress. In this study, we investigated the role of H2S in cadmium-(Cd-) induced cell death of root tips of cucumber seedlings. RESULTS: The results showed that the application of 200 µM Cd caused cell death, increased the content of reactive oxygen species (ROS), chromatin condensation, the release of Cytochrome c (Cyt c) from mitochondria and activated caspase-3-like protease. Pretreatment of seedlings with 100 µM sodium hydrogen sulfide (NaHS, a H2S donor) effectively alleviated the growth inhibition and reduced cell death of root tips caused by Cd stress. Additionally, NaHS + Cd treatment could decrease the ROS level and enhanced antioxidant enzyme activity. Pretreatment with NaHS also inhibited the release of Cyt c from the mitochondria, the opening of the mitochondrial permeability transition pore (MPTP), and the activity of caspase-3-like protease in the root tips of cucumber seedling under Cd stress. CONCLUSION: H2S inhibited Cd-induced cell death in cucumber root tips by reducing ROS accumulation, activating the antioxidant system, inhibiting mitochondrial Cyt c release and reducing the opening of the MPTP. The results suggest that H2S is a negative regulator of Cd-induced cell death in the root tips of cucumber seedling.


Asunto(s)
Cadmio/toxicidad , Muerte Celular/efectos de los fármacos , Cucumis sativus/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Meristema/efectos de los fármacos , Cucumis sativus/metabolismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
9.
BMC Plant Biol ; 20(1): 102, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32138654

RESUMEN

BACKGROUND: Brassinolide (BR), as a new type of plant hormones, is involved in the processes of plant growth and stress response. Previous studies have reported the roles of BR in regulating plant developmental processes and also response tolerance to abiotic stresses in plants. The main purpose of our study was to explore whether nitric oxide (NO) plays a role in the process of BR-induced adventitious root formation in cucumber (Cucumis sativus L.). RESULTS: Exogenous application of 1 µM BR significantly promoted adventitious rooting, while high concentrations of BR (2-8 µM) effectively inhibited adventitious rooting. NO donor (S-nitroso-N-acerylpenicillamine, SNAP) promoted the occurrence of adventitious roots. Simultaneously, BR and SNAP applied together significantly promoted adventitious rooting and the combined effect was superior to the application of BR or SNAP alone. Moreover, NO scavenger (c-PTIO) and inhibitors (L-NAME and Tungstate) inhibited the positive effects of BR on adventitious rooting. BR at 1 µM also increased endogenous NO content, NO synthase (NOS-like) and Nitrate reductase (NR) activities, while BRz (a specific BR biosynthesis inhibitor) decreased these effects. In addition, the relative expression level of NR was up-regulated by BR and SNAP, whereas BRz down-regulated it. The application of NO inhibitor (Tungstate) in BR also inhibited the up-regulation of NR. CONCLUSION: BR promoted the formation of adventitious roots by inducing the production of endogenous NO in cucumber.


Asunto(s)
Brasinoesteroides/farmacología , Cucumis sativus/crecimiento & desarrollo , Óxido Nítrico/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Esteroides Heterocíclicos/farmacología , Brasinoesteroides/administración & dosificación , Cucumis sativus/efectos de los fármacos , Óxido Nítrico/administración & dosificación , Raíces de Plantas/efectos de los fármacos , Esteroides Heterocíclicos/administración & dosificación
10.
Plants (Basel) ; 13(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38337916

RESUMEN

Melatonin plays a vital role in plant growth and development. In this study, we treated hydroponically grown tomato roots with various concentrations of exogenous melatonin (0, 10, 30, and 50 µmol·L-1). We utilized root scanning and microscopy to examine alterations in root morphology and cell differentiation and elucidated the mechanism by which melatonin regulates these changes through the interplay with endogenous hormones and relevant genes. The results showed that for melatonin at concentrations ranging between 10 and 30 µmol·L-1, the development of lateral roots were significantly stimulated, the root hair growth was enhanced, and biomass accumulation and root activity were increased. Furthermore, we elucidated that melatonin acts as a mediator for the expression of genes, such as SlCDKA1, SlCYCA3;1, SlARF2, SlF3H, and SlKT1, which are involved in the regulation of root morphology changes. Additionally, we observed that melatonin influences the levels of endogenous hormones, including ZT, GA3, IAA, ABA, and BR, which subsequently impact the root morphology development of tomato roots. In summary, this study shows that tomato root morphology can be promoted by the optimal concentration of exogenous melatonin (10-30 µmol·L-1).

11.
Front Plant Sci ; 14: 1323048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186602

RESUMEN

The content and proportion of sugars and acids in tomato fruit directly affect its flavor quality. Previous studies have shown that 5-aminolevulinic acid (ALA) could promote fruit ripening and improve its aroma quality. In order to explore the effect of ALA on sugar and acid quality during tomato fruit development, 0, 100, and 200 mg L-1 ALA solutions were sprayed on the fruit surface 10 days after pollination of the fourth inflorescence, and the regulation of ALA on sugar, acid metabolism and flavor quality of tomato fruit was analyzed. The results showed that ALA treatment could enhance the activities of acid invertase (AI), neutral invertase (NI), and sucrose synthase (SS), reduce the activity of sucrose phosphate synthase (SPS), up-regulate the expression of SlAI, SlNI and SlSS, change the composition and content of sugar in tomato fruit at three stages, significantly increase the content of sugars in fruit, and promote the accumulation of sugars into flesh. Secondly, ALA treatments increased the activities of phosphoenolpyruvate carboxykinase (PEPC), malic enzyme (ME), and citrate synthase (CS), up-regulated the expression of SlPPC2, SlME1, and SlCS, and reduced the citric acid content at maturity stage, thereby reducing the total organic acid content. In addition, ALA could also increase the number and mass fraction of volatile components in mature tomato fruits. These results indicated that exogenous application of ALA during tomato fruit development could promote the formation of fruit aroma quality and were also conducive to the formation of fruit sugar and acid quality.

12.
Front Plant Sci ; 13: 878932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712603

RESUMEN

Light is one of the most important environmental signals in plant growth, development, and stress response. Green light has been proved to enhance plant defense against biotic and/or abiotic stress. To illustrate the effects of green light partially replaced red light and blue light on the plant under drought condition, cucumber (Cucumis sativus L. cv. Xinchun No. 4) seedlings were treated with short-term drought stress and were concomitantly exposed to four treatments, which were set up by adjusting the relative amount of green light as 0 (RB), 25 (RBG25), 50 (RBG50), and 75 (RBG75) µmol m-2 s-1, respectively, with a total photosynthetic photon flux density of 250 µmol m-2 s-1 and a fixed red-to-blue ratio of 4:1. The results showed that compared with RB, RBG50 significantly increased shoot fresh weight (FW) and dry weight (DW), root DW, plant height, stem diameter, leaf area, and leaf dry mass per unit area (LMA) by 10.61, 7.69, 66.13, 6.22, 10.02, 4.10, and 12.41%, respectively. Also, the addition of green light significantly increased the root volume and root tip number. Moreover, green light partial replacement of red light and blue light increased total water content, especially free water content, improved leaf water status, and alleviated water loss in plants caused by drought stress. Also, the addition of green light increased net photosynthetic rate (Pn), reduced both stomata conductance (gs) and transpiration rate (E), enhanced the intrinsic water-use efficiency (WUE) and instantaneous water-use efficiency (iWUE) of leaves, and increased the content of chlorophylls a and b. Green light substituting a proportion of blue and red light regulated stomatal aperture by significantly increasing abscisic acid (ABA) and γ-aminobutyric acid (GABA) content. In addition, the increase of GABA was resulted from the upregulation of Glutamate Decarboxylase 2 (CsGAD2). However, the relative electrolytic leakage and contents of malondialdehyde (MDA), superoxide anion ( O 2 - ), and hydrogen peroxide (H2O2) vigorously decreased as the intensity of green light was added to the spectrum under drought. Conclusively, green light partially replaced red light and blue light and improved drought tolerance of cucumber seedlings by upregulating the expression of CsGAD2 gene and promoting the synthesis of GABA. The increase in GABA content further downregulated the expression of aluminum-activated malate transporter 9 (CsALMT9) gene, induced stomata to close, improved water utilization, and alleviated damage caused by drought. This study highlights a role of green light in plant physiological processes. Moreover, analyzing the function of green light on improving drought tolerance of plants could open alternative avenues for improving plant stress resilience.

13.
Front Plant Sci ; 13: 999051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570895

RESUMEN

Tip-burn has seriously affected the yield, quality and commodity value of mini Chinese cabbage. Calcium (Ca2+) deficiency is the main cause of tip-burn. In order to investigate whether exogenous brassinosteroids (BRs) can alleviate tip-burn induced by calcium (Ca2+) deficiency and its mechanism, in this study, Ca2+ deficiency in nutrient solution was used to induced tip-burn, and then distilled water and BRs were sprayed on leaves to observe the tip-burn incidence of mini Chinese cabbage. The tip-burn incidence and disease index, leaf area, fluorescence parameters (Fv/Fm, NPQ, qP andφPSII) and gas exchange parameters (Tr, Pn, Gs and Ci), pigment contents, cell wall components, mesophyll cell ultrastructure and the expression of genes related to chlorophyll degradation were measured. The results showed that exogenous BRs reduced the tip-burn incidence rate and disease index of mini Chinese cabbage, and the tip-burn incidence rate reached the highest on the ninth day after treatment. Exogenous BRs increased the contents of cellulose, hemifiber, water-soluble pectin in Ca2+ deficiency treated leaves, maintaining the stability of cell wall structure. In addition, BRs increased photosynthetic rate by increasing the activities of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose 1,6-bisphosphatase (FBPase) related to Calvin cycle, maintaining relatively complete chloroplast structure and higher chlorophyll content via down-regulating the expression of BrPPH1 and BrPAO1 genes related to chlorophyll degradation. In conclusion, exogenous BRs alleviated calcium deficiency-induced tip-burn by maintaining cell wall structural stability and higher photosynthesis.

14.
PeerJ ; 10: e13521, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669966

RESUMEN

Toxic stress caused by autotoxins is a common phenomenon for cucumber under monoculture condition. A previous study demonstrated that grafting could enhance the resistance of cucumber to cinnamic acid (CA) stress, but the underlying mechanism behind this enhanced resistance is still unclear. In the present study, we reconfirmed the stronger resistance of grafted rootstock (RG) compared to the non-grafted (NG) cucumber as measured though plant biomass accumulation. In addition, we focused on the phenolic and other aromatic acids metabolism in hydroponic culture model system using a combination of qRT-PCR (to measure gene expression of relevant genes) and HPLC (to detect the presence of phenolic and other aromatic acids). The results showed that the exogenous CA lead to the expression of four enzymes involved in phenolic and other aromatic acids biosynthesis, and a larger increase was observed in grafted rootstock (RG). Specifically, expression of six genes, involved in phenolic and other aromatic acids biosynthesis (PAL, PAL1, C4H, 4CL1, 4CL2 and COMT), with the exception of 4CL2, were significantly up-regulated in RG but down-regulated in NG when exposed to CA. Furthermore, six kinds of phenolic and other aromatic acids were detected in leaves and roots of NG and RG cucumber, while only benzoic acid and cinnamic acid were detected in root exudate of all samples. The CA treatment resulted in an increase of p-hydroxybenzonic acid, benzoic acid and cinnamic acid contents in RG cucumber, but decrease of p-coumaric acid and sinapic acid contents in NG cucumber. Surprisingly, the type and amount of phenolic and other aromatic acids in root exudate was improved by exogenous CA, particularly for RG cucumber. These results suggest that a possible mechanism for the stronger resistance to CA of RG than NG cucumber could involve the up-regulation of key genes involved in phenolic and other aromatic acids metabolism, and that the excessive phenolic compounds released to surroundings is a result of the accumulation of phenolic compounds in a short time by the plant under stress.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cinamatos/metabolismo , Fenoles/toxicidad , Ácido Benzoico/metabolismo
15.
Front Plant Sci ; 13: 845396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720555

RESUMEN

The 5-aminolevulinic acid (ALA), a new type of plant growth regulator, can relieve the toxicity of cadmium (Cd) to plants. However, its mechanism has not been thoroughly studied. In the study, the roles of ALA have been investigated in the tolerance of Chinese cabbage (Brassica pekinensis L.) seedlings to Cd stress. The results showed that Cd significantly reduced the biomass and the length of the primary root of seedlings but increased the malondialdehyde (MDA) and the hydrogen peroxide (H2O2) contents. These can be effectively mitigated through the application of ALA. The ALA can further induce the activities of antioxidant enzymes in the ascorbate-glutathione (AsA-GSH) cycle under Cd stress, which resulted in high levels of both GSH and AsA. Under ALA + Cd treatment, the seedlings showed a higher chlorophyll content and photosynthetic performance in comparison with Cd treatment alone. Microscopic analysis results confirmed that ALA can protect the cell structure of shoots and roots, i.e., stabilizing the morphological structure of chloroplasts in leaf mesophyll cells. The qRT-PCR results further reported that ALA downregulated the expressions of Cd absorption and transport-related genes in shoots (HMA2 and HMA4) and roots (IRT1, IRT2, Nramp1, and Nramp3), which resulted in the low Cd content in the shoots and roots of cabbage seedlings. Taken together, the exogenous application of ALA alleviates Cd stress through maintaining redox homeostasis, protecting the photosynthetic system, and regulating the expression of Cd transport-related genes in Chinese cabbage seedlings.

16.
Front Plant Sci ; 13: 968514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035700

RESUMEN

Autotoxicity is a key factor that leads to obstacles in continuous cropping systems. Although Si is known to improve plant resistance to biotic and abiotic stresses, little is known about its role in regulating leaf water status, mineral nutrients, nitrogen metabolism, and root morphology of cucumber under autotoxicity stress. Here, we used cucumber seeds (Cucumis sativus L. cv. "Xinchun No. 4") to evaluate how exogenous Si (1 mmol L-1) affected the leaf water status, mineral nutrient uptake, N metabolism-related enzyme activities, root morphology, and shoot growth of cucumber seedlings under 0.8 mmol L-1 CA-induced autotoxicity stress. We found that CA-induced autotoxicity significantly reduced the relative water content and water potential of leaves and increase their cell sap concentration. CA-induced stress also inhibited the absorption of major (N, P, K, Ca, Mg) and trace elements (Fe, Mn, Zn). However, exogenous Si significantly improved the leaf water status (relative water content and water potential) of cucumber leaves under CA-induced stress. Exogenous Si also promoted the absorption of mineral elements by seedlings under CA-induced stress and alleviated the CA-induced inhibition of N metabolism-related enzyme activities (including nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase). Moreover, exogenous Si improved N uptake and utilization, promoted root morphogenesis, and increased the growth indexes of cucumber seedlings under CA-induced stress. Our findings have far-reaching implications for overcoming the obstacles to continuous cropping in cucumber cultivation.

17.
Front Nutr ; 9: 1036843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438749

RESUMEN

5-Aminolevulinic acid (ALA) plays a vital role in promoting plant growth, enhancing stress resistance, and improving fruit yield and quality. In the present study, tomato fruits were harvested at mature green stage and sprayed with 200 mg L-1 ALA on fruit surface. During ripening, the estimation of primary and secondary metabolites, carotenoids, and chlorophyll contents, and the expression levels of key genes involved in their metabolism were carried out. The results showed that ALA significantly promoted carotenoids accumulation by upregulating the gene expression levels of geranylgeranyl diphosphate synthase (GGPPS, encoding geranylgeranyl diphosphate synthase), phytoene synthase 1 (PSY1, encoding phytoene synthase), phytoene desaturase (PDS, encoding phytoene desaturase), and lycopeneß-cyclase (LCYB, encoding lycopene ß-cyclase), whereas chlorophyll content decreased by downregulating the expression levels of Mg-chelatase (CHLH, encoding Mg-chelatase) and protochlorophyllide oxidoreductase (POR, encoding protochlorophyllide oxidoreductase). Besides, the contents of soluble solids, vitamin C, soluble protein, free amino acids, total soluble sugar, organic acid, total phenol, and flavonoid were increased in ALA-treated tomato fruit, but the fruit firmness was decreased. These results indicated that the exogenous ALA could not only promote postharvest tomato fruit ripening but also improve the internal nutritional and flavor quality of tomato fruit.

18.
Foods ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36553839

RESUMEN

Melatonin plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how melatonin regulates primary and secondary metabolites during fruit growth and development are poorly understood. In this study, the surfaces of tomato fruit were sprayed with different concentrations of melatonin (0, 50, and 100 µmol·L-1) on the 20th day after anthesis; we used high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS) to determine the changes in primary and secondary metabolite contents during fruit development and measured the activity of sucrose metabolizing enzymes during fruit development. Our results showed that 100 µmol·L-1 melatonin significantly promoted the accumulation of soluble sugar in tomato fruit by increasing the activities of sucrose synthase (SS), sucrose phosphate synthase (SPS), and acid convertase (AI). The application of 100 µmol·L-1 melatonin also increased the contents of ten amino acids in tomato fruit as well as decreased the contents of organic acids. In addition, 100 µmol·L-1 melatonin application also increased the accumulation of some secondary metabolites, such as six phenolic acids, three flavonoids, and volatile substances (including alcohols, aldehydes, and ketones). In conclusion, melatonin application improves the internal nutritional and flavor quality of tomato fruit by regulating the accumulation of primary and secondary metabolites during tomato fruit ripening. In the future, we need to further understand the molecular mechanism of melatonin in tomato fruit to lay a solid foundation for quality improvement breeding.

19.
Front Plant Sci ; 12: 709313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322149

RESUMEN

Normal development of plants is inhibited by inadequate light in winter in greenhouses in Northwest China. Growth lamps, using light-emitting diodes (LEDs) with red blue light (7R2B), were used to supplement daylight for 1, 2, and 3 h. Seedling growth, photosynthesis, and photosynthetic product; the Calvin cycle key and sugar metabolism-related enzymes and their encoding genes; and the light signal sensing regulation of key gene expression were studied in greenhouse cucumbers under three treatments to determine the best supplemental light durations to enhance cucumber cultivation in greenhouses in winter. Treatment with LED red and blue light for 3 h significantly promoted the growth and development of cucumbers, root growth, and dry matter accumulation. It improved the photosynthetic rate, photosynthetic pigment content, and light energy utilization efficiency in cucumbers. Supplementation with red and blue LED light for 3 h upregulated the expression levels of key genes encoding the Calvin cycle and enzymes related to sugar metabolism in cucumber leaves, which promoted the synthesis and accumulation of photosynthates. The expression levels of phytochrome B, cryptochrome 1, and hypocotyl 5 in the cucumber leaves were also significantly upregulated after 3 h of light supplementation. Combined LED red and blue light for 3 h should be used to supplement natural light to enhance the cucumber cultivation in greenhouses in winter.

20.
Front Plant Sci ; 12: 636121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815443

RESUMEN

Soil salinity causes damage to plants and a reduction in output. A natural plant growth regulator, 5-aminolevulinic acid (ALA), has been shown to promote plant growth under abiotic stress conditions. In the present study, we assessed the effects of exogenously applied ALA (25 mg L-1) on the root architecture and Na+ distribution of cucumber (Cucumis sativus L.) seedlings under moderate NaCl stress (50 mmol L-1). The results showed that exogenous ALA improved root length, root volume, root surface area, and cell activity in the root tips, which were inhibited under salt stress. In addition, although salinity stress increased the subcellular Na+ contents, such as those of the cell wall, nucleus, plastid, and mitochondria, ALA treatment reduced these Na+ contents, except the soluble fraction. Molecular biological analysis revealed that ALA application upregulated both the SOS1 and HA3 transcriptional and translational levels, which suggested that the excretion of Na+ into the cytoplasm cloud was promoted by exogenous ALA. Meanwhile, exogenously applied ALA also upregulated the gene and protein expression of NHX1 and VHA-A under salinity stress, which suggested that the compartmentalization of Na+ to the vacuole was enhanced. Overall, exogenous ALA mitigated the damage caused by NaCl in cucumber by enhancing Na+ redistribution and increasing the cytoactivity of root cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA