Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2205277119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252012

RESUMEN

Mucins are the main macrocomponents of the mucus layer that protects the digestive tract from pathogens. Fucosylation of mucins increases mucus viscoelasticity and its resistance to shear stress. These properties are altered in patients with ulcerative colitis (UC), which is marked by a chronic inflammation of the distal part of the colon. Here, we show that levels of Fucosyltransferase 8 (FUT8) and specific mucins are increased in the distal inflamed colon of UC patients. Recapitulating this FUT8 overexpression in mucin-producing HT29-18N2 colonic cell line increases delivery of MUC1 to the plasma membrane and extracellular release of MUC2 and MUC5AC. Mucins secreted by FUT8 overexpressing cells are more resistant to removal from the cell surface than mucins secreted by FUT8-depleted cells (FUT8 KD). FUT8 KD causes intracellular accumulation of MUC1 and alters the ratio of secreted MUC2 to MUC5AC. These data fit well with the Fut8-/- mice phenotype, which are protected from UC. Fut8-/- mice exhibit a thinner proximal colon mucus layer with an altered ratio of neutral to acidic mucins. Together, our data reveal that FUT8 modifies the biophysical properties of mucus by controlling levels of cell surface MUC1 and quantity and quality of secreted MUC2 and MUC5AC. We suggest that these changes in mucus viscoelasticity likely facilitate bacterial-epithelial interactions leading to inflammation and UC progression.


Asunto(s)
Colitis Ulcerosa , Fucosiltransferasas , Animales , Ratones , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Fucosiltransferasas/genética , Inflamación , Mucina 2/genética , Mucina 2/metabolismo , Células HT29
2.
J Biol Chem ; 299(8): 105052, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37454739

RESUMEN

Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.


Asunto(s)
Disacáridos , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Ratones , Disacáridos/farmacología , Modelos Animales de Enfermedad , Interleucina-6/genética , Sulfato de Queratano/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/inducido químicamente , Lectinas Tipo C/metabolismo
3.
J Biol Chem ; 299(12): 105365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865317

RESUMEN

Glycan structure is often modulated in disease or predisease states, suggesting that such changes might serve as biomarkers. Here, we generated a monoclonal antibody (mAb) against the core fucose of the N-glycan in human IgG. Notably, this mAb can be used in Western blotting and ELISA. ELISA using this mAb revealed a low level of the core fucose of the N-glycan in IgG, suggesting that the level of acore fucosylated (noncore fucosylated) IgG was increased in the sera of the patients with lung cancer, chronic obstructive pulmonary disease, and interstitial pneumonia compared to healthy subjects. In a coculture analysis using human lung adenocarcinoma A549 cells and antibody-secreting B cells, the downregulation of the FUT8 (α1,6 fucosyltransferase) gene and a low level of core fucose of the N-glycan in IgG in antibody-secreting B cells were observed after coculture. A dramatic alteration in gene expression profiles for cytokines, chemokines, and their receptors were also observed after coculturing, and we found that the identified C-C motif chemokine 2 was partially involved in the downregulation of the FUT8 gene and the low level of core fucose of the N-glycan in IgG in antibody-secreting B cells. We also developed a latex turbidimetric immunoassay using this mAb. These results suggest that communication with C-C motif chemokine 2 between lung cells and antibody-secreting B cells downregulate the level of core fucose of the N-glycan in IgG, i.e., the increased level of acore fucosylated (noncore fucosylated) IgG, which would be a novel biomarker for the diagnosis of patients with pulmonary diseases.


Asunto(s)
Anticuerpos Monoclonales , Fucosa , Inmunoglobulina G , Enfermedades Pulmonares , Polisacáridos , Humanos , Células A549 , Anticuerpos Monoclonales/metabolismo , Especificidad de Anticuerpos , Linfocitos B/inmunología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Fucosa/sangre , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Inmunoensayo/normas , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/inmunología , Polisacáridos/metabolismo , Animales , Ratones , Células CHO , Células HEK293 , Cricetulus
4.
J Biol Chem ; 298(6): 101950, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35447118

RESUMEN

Asparagine-linked glycosylation (N-glycosylation) of proteins in the cancer secretome has been gaining increasing attention as a potential biomarker for cancer detection and diagnosis. Small extracellular vesicles (sEVs) constitute a large part of the cancer secretome, yet little is known about whether their N-glycosylation status reflects known cancer characteristics. Here, we investigated the N-glycosylation of sEVs released from small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) cells. We found that the N-glycans of SCLC-sEVs were characterized by the presence of structural units also found in the brain N-glycome, while NSCLC-sEVs were dominated by typical lung-type N-glycans with NSCLC-associated core fucosylation. In addition, lectin-assisted N-glycoproteomics of SCLC-sEVs and NSCLC-sEVs revealed that integrin αV was commonly expressed in sEVs of both cancer cell types, while the epithelium-specific integrin α6ß4 heterodimer was selectively expressed in NSCLC-sEVs. Importantly, N-glycomics of the immunopurified integrin α6 from NSCLC-sEVs identified NSCLC-type N-glycans on this integrin subunit. Thus, we conclude that protein N-glycosylation in lung cancer sEVs may potentially reflect the histology of lung cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Glicosilación , Neoplasias Pulmonares , Procesamiento Proteico-Postraduccional , Carcinoma Pulmonar de Células Pequeñas , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pulmonares/patología , Polisacáridos/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología
5.
J Biol Chem ; 298(6): 101880, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367207

RESUMEN

The deposition of amyloid ß (Aß) in blood vessels of the brain, known as cerebral amyloid angiopathy (CAA), is observed in most patients with Alzheimer's disease (AD). Compared with the pathology of CAA in humans, the pathology in most mouse models of AD is not as evident, making it difficult to examine the contribution of CAA to the pathogenesis of AD. On the basis of biochemical analyses that showed blood levels of soluble amyloid precursor protein (APP) in rats and mice were markedly lower than those measured in human samples, we hypothesized that endothelial APP expression would be markedly lower in rodents and subsequently generated mice that specifically express human WT APP (APP770) in endothelial cells (ECs). The resulting EC-APP770+ mice exhibited increased levels of serum Aß and soluble APP, indicating that endothelial APP makes a critical contribution to blood Aß levels. Even though aged EC-APP770+ mice did not exhibit Aß deposition in the cortical blood vessels, crossing these animals with APP knock-in mice (AppNL-F/NL-F) led to an expanded CAA pathology, as evidenced by increased amounts of amyloid accumulated in the cortical blood vessels. These results highlight an overlooked interplay between neuronal and endothelial APP in brain vascular Aß deposition. We propose that these EC-APP770+:AppNL-F/NL-F mice may be useful to study the basic molecular mechanisms behind the possible breakdown of the blood-brain barrier upon administration of anti-Aß antibodies.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Encéfalo , Angiopatía Amiloide Cerebral , Células Endoteliales , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Transgénicos , Ratas
6.
J Biol Chem ; 296: 100354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524390

RESUMEN

Glycosylation, the most common posttranslational modification of proteins, is a stepwise process that relies on tight regulation of subcellular glycosyltransferase location to control the addition of each monosaccharide. Glycosyltransferases primarily reside and function in the endoplasmic reticulum (ER) and the Golgi apparatus; whether and how they traffic beyond the Golgi, how this trafficking is controlled, and how it impacts glycosylation remain unclear. Our previous work identified a connection between N-glycosylation and Rab11, a key player in the post-Golgi transport that connects recycling endosomes and other compartments. To learn more about the specific role of Rab11, we knocked down Rab11 in HeLa cells. Our findings indicate that Rab11 knockdown results in a dramatic enhancement in the sialylation of N-glycans. Structural analyses of glycans using lectins and LC-MS revealed that α2,3-sialylation is selectively enhanced, suggesting that an α2,3-sialyltransferase that catalyzes the sialyation of glycoproteins is activated or upregulated as the result of Rab11 knockdown. ST3GAL4 is the major α2,3-sialyltransferase that acts on N-glycans; we demonstrated that the localization of ST3GAL4, but not the levels of its mRNA, protein, or donor substrate, was altered by Rab11 depletion. In knockdown cells, ST3GAL4 is densely distributed in the trans-Golgi network, compared with the wider distribution in the Golgi and in other peripheral puncta in control cells, whereas the α2,6-sialyltransferase ST6GAL1 is predominantly localized to the Golgi regardless of Rab11 knockdown. This indicates that Rab11 may negatively regulate α2,3-sialylation by transporting ST3GAL4 to post-Golgi compartments (PGCs), which is a novel mechanism of glycosyltransferase regulation.


Asunto(s)
Sialiltransferasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Glicosilación , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Ratas , Red trans-Golgi/metabolismo
7.
Biochem Biophys Res Commun ; 633: 68-71, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36344167

RESUMEN

Over the past 3 decades, our group has been involved in studies related to the biosynthesis of N-glycan branching and related glycosyltransferases and have purified most of these Golgi-derived enzymes to homogeneity using classical purification methods and cloned the cDNA of GnT-III, IV, V, VI and Fut8 except GnT-IX(Vb) which was obtained by homology cloning. Based primarily on our data, we briefly summarize the significance of three major enzymes and discuss perspectives for future studies on the occasion of Ernesto's 90th birthday celebration.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Enfermedad de Alzheimer , Neoplasias , Enfermedad Pulmonar Obstructiva Crónica , Humanos , N-Acetilglucosaminiltransferasas/genética , Polisacáridos
8.
Arch Biochem Biophys ; 726: 109115, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34986418

RESUMEN

This commentary describes a highly cited paper by Yasuhisa Kono that appeared in Archive. Biochem. Biophys. He established the basic mechanism that involves the autooxidation of hydroxylamine for the assay of superoxide dismutase activity and contributed to the development and progress that has been made in the enzyme assay systems.


Asunto(s)
Hidroxilaminas , Superóxido Dismutasa , Superóxidos , Hidroxilaminas/metabolismo , Cinética , Oxidación-Reducción , Superóxido Dismutasa/metabolismo
9.
Glycoconj J ; 39(2): 167-176, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35089466

RESUMEN

The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.


Asunto(s)
Glicosiltransferasas , N-Acetilglucosaminiltransferasas , Carcinogénesis , Glicosiltransferasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de Señal
10.
Biochem Soc Trans ; 49(1): 441-453, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33616615

RESUMEN

Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.


Asunto(s)
Materiales Biomiméticos/uso terapéutico , Sulfato de Queratano/química , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Antígenos de Superficie/fisiología , Materiales Biomiméticos/química , Fucosa/metabolismo , Fucosiltransferasas/fisiología , Glicosilación , Humanos , Lectinas Tipo C/antagonistas & inhibidores , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/fisiología , Lectinas de Unión a Manosa/antagonistas & inhibidores , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/fisiología , Ratones , Ratones Noqueados , Terapia Molecular Dirigida/métodos , Polisacáridos/química , Polisacáridos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
11.
Glycoconj J ; 38(3): 273-275, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33740223

RESUMEN

This Special Issue on "Advances in Glycation: from food to human health and disease" was planned after the XXV International Symposium on Glycoconjugates (Glyco25) in Milan in order to ask special attention of importance of glycation to glycoscience community. In addition, we also celebrate the 30th anniversary of JMARS (Japan Maillard Reaction Society), and dedicated to one of the pioneers of this field, Professor Vincent Monnier, MD. He contributed enormously to studies on glycation related to aging and diseases to date and also he contributed to establish IMARS (International Maillard Reaction Society) as well as JMARS.


Asunto(s)
Alimentos , Glucosa/química , Glucosa/metabolismo , Edición/historia , Culinaria , Productos Finales de Glicación Avanzada , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Reacción de Maillard
12.
Mol Cell Proteomics ; 18(10): 2044-2057, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31375533

RESUMEN

Glycoproteins are decorated with complex glycans for protein functions. However, regulation mechanisms of complex glycan biosynthesis are largely unclear. Here we found that bisecting GlcNAc, a branching sugar residue in N-glycan, suppresses the biosynthesis of various types of terminal epitopes in N-glycans, including fucose, sialic acid and human natural killer-1. Expression of these epitopes in N-glycan was elevated in mice lacking the biosynthetic enzyme of bisecting GlcNAc, GnT-III, and was conversely suppressed by GnT-III overexpression in cells. Many glycosyltransferases for N-glycan terminals were revealed to prefer a nonbisected N-glycan as a substrate to its bisected counterpart, whereas no up-regulation of their mRNAs was found. This indicates that the elevated expression of the terminal N-glycan epitopes in GnT-III-deficient mice is attributed to the substrate specificity of the biosynthetic enzymes. Molecular dynamics simulations further confirmed that nonbisected glycans were preferentially accepted by those glycosyltransferases. These findings unveil a new regulation mechanism of protein N-glycosylation.


Asunto(s)
Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/genética , Polisacáridos/química , Polisacáridos/genética , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Ratones , Simulación de Dinámica Molecular , Mutación , N-Acetilglucosaminiltransferasas/metabolismo , Especificidad por Sustrato
13.
Adv Exp Med Biol ; 1325: 137-149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495533

RESUMEN

Extracellular vesicles (EVs), a generic term for any vesicles or particles that are released from cells, play an important role in modulating numerous biological and pathological events, including development, differentiation, aging, thrombus formation, immune responses, neurodegenerative diseases, and tumor progression. During the biogenesis of EVs, they encapsulate biologically active macromolecules (i.e., nucleotides and proteins) and transmit signals for delivering them to neighboring or cells that are located some distance away. In contrast, there are receptor molecules on the surface of EVs that function to mediate EV-to-cell and EV-to-matrix interactions. A growing body of evidence indicates that the EV surface is heavily modified with glycans, the function of which is to regulate the biogenesis and extracellular behaviors of EVs. In this chapter, we introduce the current status of our knowledge concerning EV glycosylation and discuss how it influences EV biology, highlighting the potential roles of EV glycans in clinical applications.


Asunto(s)
Exosomas , Vesículas Extracelulares , Enfermedades Neurodegenerativas , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Glicosilación , Humanos , Enfermedades Neurodegenerativas/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(20): E4651-E4660, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29720442

RESUMEN

Mucosal T lymphocytes from patients with ulcerative colitis (UC) were previously shown to display a deficiency in branched N-glycosylation associated with disease severity. However, whether this glycosylation pathway shapes the course of the T cell response constituting a targeted-specific mechanism in UC remains largely unknown. In this study, we demonstrated that metabolic supplementation of ex vivo mucosal T cells from patients with active UC with N-acetylglucosamine (GlcNAc) resulted in enhancement of branched N-glycosylation in the T cell receptor (TCR), leading to suppression of T cell growth, inhibition of the T helper 1 (Th1)/Th17 immune response, and controlled T cell activity. We further demonstrated that mouse models displaying a deficiency in the branched N-glycosylation pathway (MGAT5-/-, MGAT5+/-) exhibited increased susceptibility to severe forms of colitis and early-onset disease. Importantly, the treatment of these mice with GlcNAc reduced disease severity and suppressed disease progression due to a controlled T cell-mediated immune response at the intestinal mucosa. In conclusion, our human ex vivo and preclinical results demonstrate the targeted-specific immunomodulatory properties of this simple glycan, proposing a therapeutic approach for patients with UC.


Asunto(s)
Acetilglucosamina/farmacología , Linfocitos T CD4-Positivos/inmunología , Colitis Ulcerosa/inmunología , N-Acetilglucosaminiltransferasas/fisiología , Polisacáridos/metabolismo , Inmunidad Adaptativa , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Estudios de Casos y Controles , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Citocinas/metabolismo , Glicosilación , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445285

RESUMEN

N-glycosylation is essential for many biological processes in mammals. A variety of N-glycan structures exist, of which, the formation of bisecting N-acetylglucosamine (GlcNAc) is catalyzed by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene). We previously identified various bisecting GlcNAc-modified proteins involved in Alzheimer's disease and cancer. However, the mechanisms by which GnT-III acts on the target proteins are unknown. Here, we performed comparative glycoproteomic analyses using brain membranes of wild type (WT) and Mgat3-deficient mice. Target glycoproteins of GnT-III were enriched with E4-phytohemagglutinin (PHA) lectin, which recognizes bisecting GlcNAc, and analyzed by liquid chromatograph-mass spectrometry. We identified 32 N-glycosylation sites (Asn-Xaa-Ser/Thr, Xaa ≠ Pro) that were modified with bisecting GlcNAc. Sequence alignment of identified N-glycosylation sites that displayed bisecting GlcNAc suggested that GnT-III does not recognize a specific primary amino acid sequence. The molecular modeling of GluA1 as one of the good cell surface substrates for GnT-III in the brain, indicated that GnT-III acts on N-glycosylation sites located in a highly flexible and mobile loop of GluA1. These results suggest that the action of GnT-III is partially affected by the tertiary structure of target proteins, which can accommodate bisecting GlcNAc that generates a bulky flipped-back conformation of the modified glycans.


Asunto(s)
Acetilglucosamina/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Péptidos/metabolismo , Receptores AMPA/metabolismo , Análisis de Secuencia de Proteína , Acetilglucosamina/genética , Animales , Membrana Celular/genética , Glicosilación , Ratones , Ratones Noqueados , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/metabolismo , Mapeo Peptídico , Péptidos/genética , Receptores AMPA/genética
16.
J Biol Chem ; 294(46): 17326-17338, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31594865

RESUMEN

Prolonged hyperglycemia generates advanced glycation end-products (AGEs), which are believed to be involved in the pathogenesis of diabetic complications. In the present study, we developed a polyclonal antibody against fructose-modified proteins (Fru-P antibody) and identified its epitope as glucoselysine (GL) by NMR and LC-electrospray ionization (ESI)- quadrupole TOF (QTOF) analyses and evaluated its potential role in diabetes sequelae. Although the molecular weight of GL was identical to that of fructoselysine (FL), GL was distinguishable from FL because GL was resistant to acid hydrolysis, which converted all of the FLs to furosine. We also detected GL in vitro when reduced BSA was incubated with fructose for 1 day. However, when we incubated reduced BSA with glucose, galactose, or mannose for 14 days, we did not detect GL, suggesting that GL is dominantly generated from fructose. LC-ESI-MS/MS experiments with synthesized [13C6]GL indicated that the GL levels in the rat eye lens time-dependently increase after streptozotocin-induced diabetes. We observed a 31.3-fold increase in GL 8 weeks after the induction compared with nondiabetic rats, and Nϵ-(carboxymethyl)lysine and furosine increased by 1.7- and 21.5-fold, respectively, under the same condition. In contrast, sorbitol in the lens levelled off at 2 weeks after diabetes induction. We conclude that GL may be a useful biological marker to monitor and elucidate the mechanism of protein degeneration during progression of diabetes.


Asunto(s)
Cristalinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Fructosa/metabolismo , Glucosa/análogos & derivados , Cristalino/metabolismo , Lisina/análogos & derivados , Animales , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Lisina/metabolismo , Masculino , Ratas , Ratas Wistar
17.
Biochem Biophys Res Commun ; 527(3): 682-688, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32423823

RESUMEN

Fucosylation is a type of glycosylation, a form of post-transcriptional regulation of proteins, involved in cancer and inflammation. It involves the attachment of a fucose residue to N-glycans, O-glycans, and glycolipids, which is catalyzed by a family of enzymes called fucosyltransferases (Futs). Among the many Futs, α-1,6-fucosyltransferase (Fut8) is the only enzyme that produces α-1,6-fucosylated oligosaccharides (core fucose). In the human liver, the expression and activity of Fut8 are frequently elevated during progression of chronic liver diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a well-known negative regulator of the low-density lipoprotein receptor (LDLR). Here, we found that loss of core fucose in immortalized hepatocytes led to LDLR downregulation through a dramatic induction of PCSK9. We used the immortalized hepatocytes derived from Fut8 knockout mice or a Fut8 knockdown AML12 hepatocyte cell line. Using these cells, we investigated the effects of Fut8 on hepatocyte cholesterol influx. Both cell lines had reduced LDLR protein levels, resulting from marked increases in PCSK9 expression. Intracellular cholesterol levels were significantly lower and LDL cholesterol uptake was suppressed in Fut8-KO cells. Hepatocyte nuclear factor 1α accumulated in nuclei of Fut8-KO hepatocytes, which mediated increases in PCSK9 mRNA expression. Our findings demonstrated that loss of core fucosylation promoted degradation of LDLR and impaired cholesterol uptake, which is a novel mechanism that regulates cholesterol influx, suggesting that Fut8 might be a novel causative gene for familial hypercholesterolemia.


Asunto(s)
Fucosa/metabolismo , Hepatocitos/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Animales , Células Cultivadas , Glicosilación , Ratones , Ratones Endogámicos C57BL , Receptores de LDL/análisis
18.
PLoS Genet ; 13(4): e1006696, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28426790

RESUMEN

The cytoplasmic peptide:N-glycanase (Ngly1 in mammals) is a de-N-glycosylating enzyme that is highly conserved among eukaryotes. It was recently reported that subjects harboring mutations in the NGLY1 gene exhibited severe systemic symptoms (NGLY1-deficiency). While the enzyme obviously has a critical role in mammals, its precise function remains unclear. In this study, we analyzed Ngly1-deficient mice and found that they are embryonic lethal in C57BL/6 background. Surprisingly, the additional deletion of the gene encoding endo-ß-N-acetylglucosaminidase (Engase), which is another de-N-glycosylating enzyme but leaves a single GlcNAc at glycosylated Asn residues, resulted in the partial rescue of the lethality of the Ngly1-deficient mice. Additionally, we also found that a change in the genetic background of C57BL/6 mice, produced by crossing the mice with an outbred mouse strain (ICR) could partially rescue the embryonic lethality of Ngly1-deficient mice. Viable Ngly1-deficient mice in a C57BL/6 and ICR mixed background, however, showed a very severe phenotype reminiscent of the symptoms of NGLY1-deficiency subjects. Again, many of those defects were strongly suppressed by the additional deletion of Engase in the C57BL/6 and ICR mixed background. The defects observed in Ngly1/Engase-deficient mice (C57BL/6 background) and Ngly1-deficient mice (C57BL/6 and ICR mixed background) closely resembled some of the symptoms of patients with an NGLY1-deficiency. These observations strongly suggest that the Ngly1- or Ngly1/Engase-deficient mice could serve as a valuable animal model for studies related to the pathogenesis of the NGLY1-deficiency, and that cytoplasmic ENGase represents one of the potential therapeutic targets for this genetic disorder.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Animales , Citoplasma/enzimología , Enfermedades Genéticas Congénitas/terapia , Glicosilación , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Eliminación de Secuencia/genética
19.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936666

RESUMEN

Glycosylation is the most ubiquitous post-translational modification in eukaryotes. N-glycan is attached to nascent glycoproteins and is processed and matured by various glycosidases and glycosyltransferases during protein transport. Genetic and biochemical studies have demonstrated that alternations of the N-glycan structure play crucial roles in various physiological and pathological events including progression of cancer, diabetes, and Alzheimer's disease. In particular, the formation of N-glycan branches regulates the functions of target glycoprotein, which are catalyzed by specific N-acetylglucosaminyltransferases (GnTs) such as GnT-III, GnT-IVs, GnT-V, and GnT-IX, and a fucosyltransferase, FUT8s. Although the 3D structures of all enzymes have not been solved to date, recent progress in structural analysis of these glycosyltransferases has provided insights into substrate recognition and catalytic reaction mechanisms. In this review, we discuss the biological significance and structure-function relationships of these enzymes.


Asunto(s)
Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Modelos Moleculares , Polisacáridos/metabolismo , Animales , Cristalografía por Rayos X , Humanos , Polisacáridos/química , Relación Estructura-Actividad
20.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810196

RESUMEN

Oligosaccharyltransferase (OST) is a multi-span membrane protein complex that catalyzes the addition of glycans to selected Asn residues within nascent polypeptides in the lumen of the endoplasmic reticulum. This process, termed N-glycosylation, is a fundamental post-translational protein modification that is involved in the quality control, trafficking of proteins, signal transduction, and cell-to-cell communication. Given these crucial roles, N-glycosylation is essential for homeostasis at the systemic and cellular levels, and a deficiency in genes that encode for OST subunits often results in the development of complex genetic disorders. A growing body of evidence has also demonstrated that the expression of OST subunits is cell context-dependent and is frequently altered in malignant cells, thus contributing to tumor cell survival and proliferation. Importantly, a recently developed inhibitor of OST has revealed this enzyme as a potential target for the treatment of incurable drug-resistant tumors. This review summarizes our current knowledge regarding the functions of OST in the light of health and tumor progression, and discusses perspectives on the clinical relevance of inhibiting OST as a tumor treatment.


Asunto(s)
Resistencia a Antineoplásicos/genética , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Neoplasias/genética , Procesamiento Proteico-Postraduccional/genética , Secuencia de Aminoácidos/genética , Asparagina/genética , Progresión de la Enfermedad , Retículo Endoplásmico/genética , Glicosilación , Hexosiltransferasas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Polisacáridos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA