Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(17): e202300265, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36811604

RESUMEN

Mixed-cation, small band-gap perovskites via rationally alloying formamidinium (FA) and methylammonium (MA) together have been widely employed for blade-coated perovskite solar cells with satisfied efficiencies. One of the stringent challenges lies in difficult control of the nucleation and crystallization kinetics of the perovskites with mixed ingredients. Herein, a pre-seeding strategy by mixing FAPbI3 solution with pre-synthesized MAPbI3 microcrystals has been developed to smartly decouple the nucleation and crystallization process. As a result, the time window of initialized crystallization has been greatly extended by 3 folds (i.e. from 5 s to 20 s), which enables the formation of uniform and homogeneous alloyed-FAMA perovskite films with designated stoichiometric ratios. The resultant blade-coated solar cells achieved a champion efficiency of 24.31 % accompanied by outstanding reproducibility with more than 87 % of the devices showing efficiencies higher than 23 %.

2.
Angew Chem Int Ed Engl ; 61(40): e202209464, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35982524

RESUMEN

Tin-based perovskite solar cells (Sn-PSCs) have emerged as promising environmentally viable photovoltaic technologies, but still suffer from severe non-radiative recombination loss due to the presence of abundant deep-level defects in the perovskite film and under-optimized carrier dynamics throughout the device. Herein, we healed the structural imperfections of Sn perovskites in an "inside-out" manner by incorporating a new class of biocompatible chelating agent with multidentate claws, namely, 2-Guanidinoacetic acid (GAA), which passivated a variety of deep-level Sn-related and I-related defects, cooperatively reinforced the passivation efficacy, released the lattice strain, improved the structural toughness, and promoted the carrier transport of Sn perovskites. Encouragingly, an efficiency of 13.7 % with a small voltage deficit of ≈0.47 V has been achieved for the GAA-modified Sn-PSCs. GAA modification also extended the lifespan of Sn-PSCs over 1200 hours.


Asunto(s)
Compuestos de Calcio , Estaño , Quelantes , Óxidos , Recombinación Genética , Titanio
3.
ACS Appl Mater Interfaces ; 16(19): 24748-24759, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690838

RESUMEN

In the past decade, perovskite solar cell (PSC) photoelectric conversion efficiency has advanced significantly, and tin dioxide (SnO2) has been extensively used as the electron transport layer (ETL). Due to its high electron mobility, strong chemical stability, energy level matching with perovskite, and easy low-temperature fabrication, SnO2 is one of the most effective ETL materials. However, the SnO2 material as an ETL has its limitations. For example, SnO2 films prepared by low-temperature spin-coating contain a large number of oxygen vacancies, resulting in energy loss and high open-circuit voltage (VOC) loss. In addition, the crystal quality of perovskites is closely related to the substrate, and the disordered crystal orientation will lead to ion migration, resulting in a large number of uncoordinated Pb2+ defects. Therefore, interface optimization is essential to improve the efficiency and stability of the PSC. In this work, 2-(5-chloro-2-benzotriazolyl)-6-tert-butyl-p-cresol (CBTBC) was introduced for ETL modification. On the one hand, the hydroxyl group of CBTBC forms a Lewis mixture with the Sn atom, which reduces the oxygen vacancy defect and prevents nonradiative recombination. On the other hand, the SnO2/CBTBC interface can effectively improve the crystal orientation of perovskite by influencing the crystallization kinetics of perovskite, and the nitrogen element in CBTBC can effectively passivate the uncoordinated Pb2+ defects at the SnO2/perovskite interface. Finally, the prevailing PCE of PSC (1.68 eV) modified by CBTBC was 20.34% (VOC = 1.214 V, JSC = 20.49 mA/cm2, FF = 82.49%).

4.
ACS Appl Mater Interfaces ; 15(18): 22195-22203, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37129068

RESUMEN

Transparent conductive film (TCF) is a material that integrates electrical conductivity and optical transparency. It is widely used as an electrode material in thin-film solar cells. However, considerable progress is needed to facilitate its high performance and low-cost preparation. In this study, a preparation scheme for AlF3 and GaF3 co-doped ZnO (FAGZO) thin films was designed and implemented by magnetron sputtering (MS). The mutual restraint between the electrical properties and the wide-spectrum transmission performance of ZnO films was resolved. First-principles calculations showed that the doped ZnO system had n-type conductivity and that the most stable structure was the FO-AlZn-GaZn system. The experimental results verified the theoretical predictions. Single crystalline ZnO transparent conducting films (ZnO-TCFs) of high quality were achieved by MS. After rapid thermal annealing (RTA) treatment, the mobility reached 49.6 cm2/V s, and the resistivity decreased to 3.82 × 10-4 Ω cm. The AT was 90% between 380 and 1200 nm. Furthermore, the application of the prepared FAGZO film in perovskite solar cells (PSCs) has been verified. Compared to the reference indium tin oxide film, the PSCs using the FAGZO film showed higher JSC and power conversion efficiency. These results demonstrate that MS combined with anion and cation co-doping provides an effective means of exploring high-quality and high-performance ZnO-TCFs.

5.
ACS Nano ; 16(7): 10798-10810, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35796580

RESUMEN

The quality of wide-band-gap (WBG) perovskite films plays an important role in tandem solar cells. Therefore, it is necessary to improve the performance of WBG perovskite films for the development of tandem solar cells. Here, we employ F-type pseudo-halogen additives (PF6- or BF4-) into perovskite precursors. The perovskite films with F-type pseudo-halogen additives have a larger grain size and higher crystal quality with lower defect density. At the same time, the perovskite lattice increases due to substitution of F-type pseudo-halogen anions for I-/Br-, and the stress distortion in the film is released, which effectively suppresses the recombination of carriers, reduces the charge transfer loss, and inhibits the phase separation. Finally, the power conversion efficiency (PCE) of the inverted 1.67 eV perovskite devices is significantly improved to over 20% with an impressive fill factor of 84.02% and excellent device stability. In addition, the PCE of the four-terminal (4T) perovskite/silicon tandem solar cells reached 27.35% (PF6-) and 27.11% (BF4-), respectively. This provides important guidance for further improving WBG perovskite solar cell performance.

6.
Artículo en Inglés | MEDLINE | ID: mdl-35834393

RESUMEN

Surface defect passivation, which plays a vital role in achieving high-efficiency perovskite solar cells (PSCs) in a spin-coating process, is rarely compatible with a printing process. Currently, printing PSCs with high efficiency remains a challenge, as only a few laboratories realized an efficiency of over 20%. In this work, zwitterionic compounds 2-hydroxyethyl trimethyl ammonium chloride (HETACl) and butyltrimethylammonium chloride (BTACl) were introduced, both of which can spontaneously adsorb on the surface perovskite and form an ultrathin passivation layer by a dip coating method. The complex formed by the strong interaction of HETACl with MAI on the surface of the perovskite film leads to the formation of a rough perovskite surface, which affects the enhancement of device performance. BTACl with a chemically inert side chain induces a weak interaction with the perovskite. It is demonstrated that BTACl not only passivates surface defects of the perovskite but also heals the grain boundaries and results in more uniform crystallizations. Finally, PSCs upon BTACl treatment were blade-coated in an ambient environment with a relative humidity of <50%, which produced a champion efficiency of 20.5% with negligible hysteresis, and the active area of the cell device was 0.095 cm2. After being stored in air for 30 days, unencapsulated PSCs treated with BTACl retained 95% of their initial efficiency, which is far superior to that of the control and those treated with HETACl.

7.
ACS Appl Mater Interfaces ; 13(37): 44451-44459, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34506105

RESUMEN

The high density of defects in MAPbI3 perovskite films brings about severe carrier nonradiative recombination loss, which lowers the performance of MAPbI3-based perovskite solar cells (PSCs). Here, methylamine cyanate (MAOCN) molecules were introduced into MAPbI3 solutions to manipulate the crystallizatsion of the MAPbI3 films. MAOCN molecules can slow down the volatilization rate of the solvent and delay the crystallization process of the MAPbI3 film. The crystal quality of the MAPbI3 films is effectively optimized without an additive residue. Perovskite films treated by MAOCN have lower defect density and longer carrier lifetime, which lowers the carrier recombination loss. Meanwhile, the MAPbI3 film based on MAOCN has a more hydrophobic surface. The final MAPbI3-based device efficiency reached 21.28% (VOC = 1.126 V, JSC = 23.29 mA/cm2, and FF = 81.13). After 30 days of storage under atmospheric conditions, the efficiency of unencapsulated MAOCN-based PSCs only dropped by about 5%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA