Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Exp Bot ; 75(7): 1919-1933, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37988572

RESUMEN

The determination of fruit size and shape are of considerable interest in horticulture and developmental biology. Fruit typically exhibits three-dimensional structures characterized by geometric features that are dependent on the genotype. Although minor developmental variations have been recognized, few studies have fully visualized and measured these variations throughout fruit growth. Here, a high-resolution 3D scanner was used to investigate the fruit development of 51 persimmon (Diospyros kaki) cultivars with various complex shapes. We obtained 2380 3D models that fully represented fruit appearance, and enabled precise and automated measurements of shape features throughout fruit development, including horizontal and vertical grooves, length-to-width ratio, and roundness. The 3D fruit model analysis identified key stages that determined the shape attributes at maturity. Typically, genetic diversity was found in vertical groove development, and these grooves could be filled by tissue expansion in the carpel fusion zone during fruit development. In addition, transcriptome analysis of fruit tissues from groove and non-groove tissues revealed gene co-expression networks that were highly associated with groove depth variation. The presence of YABBY homologs was most closely associated with groove depth and indicated the possibility that this pathway is a key molecular contributor to vertical groove depth variation. Overall, our results revealed deterministic patterns of complex shape traits in persimmon fruit and showed that different growth patterns among tissues are the main factor contributing to the shape of both vertical and horizontal grooves.


Asunto(s)
Diospyros , Diospyros/genética , Frutas/metabolismo , Redes Reguladoras de Genes , Membrana Celular
2.
Plant J ; 111(4): 1015-1031, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699670

RESUMEN

Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.


Asunto(s)
Malus , Ácido Abscísico/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Histonas , Malus/metabolismo , Latencia en las Plantas/genética
3.
Plant J ; 110(4): 1182-1197, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35277890

RESUMEN

Japanese apricot (Prunus mume) is an attractive fruit tree originating from China, and its cultivation history dates back 7000 years. In this study, we investigated the genetic diversity, population structure, and genetic relationship of Japanese apricots in different regions of China and Japan. The analyses of the genetic variation between wild and cultivated populations improved our understanding of the general mechanisms of domestication and improvement. A total of 146 accessions of Japanese apricot from different geographic locations were sequenced. The genetic diversity of wild and domesticated accessions (3.60 × 10-3 and 3.51 × 10-3 , respectively) from China was high, and the effect of artificial selection pressure on domesticated accessions was small; however, the genetic diversity of artificially bred accessions decreased significantly (2.68 × 10-3 ) compared to domesticated accessions, which had an obvious improvement bottleneck effect. The chloroplast genome results showed that 41 haplotypes were detected, and Japanese apricots from the Yunnan region had the most haplotypes and the highest genetic diversity. The results revealed the dissemination route of Japanese apricot, not only along the Yangtze River basin system (from southwest China to Hunan, Jiangxi, and Anhui, and finally to the Jiangsu, Zhejiang, and Shanghai areas). Additionally, we discovered a second route for Japanese apricot dispersion, which was mostly in the Pearl River basin system, from southwest China to Libo of Guizhou and then to the Guangdong, Fujian, and Taiwan areas. This also showed that Japanese-bred accessions originated from Zhejiang, China. In addition, selective sweep analysis showed that most of the high-impact single nucleotide polymorphisms were identified in genes related to glucose metabolism, aromatic compound metabolism, flowering time, dormancy, and resistance to abiotic stress during the domestication and improvement of Japanese apricot.


Asunto(s)
Prunus armeniaca , Prunus , China , Frutas/química , Genómica , Fitomejoramiento , Prunus/genética , Prunus armeniaca/genética
4.
BMC Plant Biol ; 23(1): 606, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38030968

RESUMEN

BACKGROUND: Dioecy, a sexual system of single-sexual (gynoecious/androecious) individuals, is rare in flowering plants. This rarity may be a result of the frequent transition from dioecy into systems with co-sexual individuals. RESULTS: In this study, co-sexual expression (monoecy and hermaphroditic development), previously thought to be polyploid-specific in Diospyros species, was identified in the diploid D. oleifeara historically. We characterized potential genetic mechanisms that underlie the dissolution of dioecy to monoecy and andro(gyno)monoecy, based on multiscale genome-wide investigations of 150 accessions of Diospyros oleifera. We found all co-sexual plants, including monoecious and andro(gyno)monoecious individuals, possessed the male determinant gene OGI, implying the presence of genetic factors controlling gynoecia development in genetically male D. oleifera. Importantly, discrepancies in the OGI/MeGI module were found in diploid monoecious D. oleifera compared with polyploid monoecious D. kaki, including no Kali insertion on the promoter of OGI, no different abundance of smRNAs targeting MeGI (a counterpart of OGI), and no different expression of MeGI between female and male floral buds. On the contrary, in both single- and co-sexual plants, female function was expressed in the presence of a genome-wide decrease in methylation levels, along with sexually distinct regulatory networks of smRNAs and their targets. Furthermore, a genome-wide association study (GWAS) identified a genomic region and a DUF247 gene cluster strongly associated with the monoecious phenotype and several regions that may contribute to andromonoecy. CONCLUSIONS: Collectively, our findings demonstrate stable breakdown of the dioecious system in D. oleifera, presumably also a result of genomic features of the Y-linked region.


Asunto(s)
Diospyros , Diospyros/genética , Diploidia , Estudio de Asociación del Genoma Completo , Genómica , Poliploidía
5.
PLoS Genet ; 16(2): e1008566, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32069274

RESUMEN

Most angiosperms bear hermaphroditic flowers, but a few species have evolved outcrossing strategies, such as dioecy, the presence of separate male and female individuals. We previously investigated the mechanisms underlying dioecy in diploid persimmon (D. lotus) and found that male flowers are specified by repression of the autosomal gene MeGI by its paralog, the Y-encoded pseudo-gene OGI. This mechanism is thought to be lineage-specific, but its evolutionary path remains unknown. Here, we developed a full draft of the diploid persimmon genome (D. lotus), which revealed a lineage-specific whole-genome duplication event and provided information on the architecture of the Y chromosome. We also identified three paralogs, MeGI, OGI and newly identified Sister of MeGI (SiMeGI). Evolutionary analysis suggested that MeGI underwent adaptive evolution after the whole-genome duplication event. Transformation of tobacco plants with MeGI and SiMeGI revealed that MeGI specifically acquired a new function as a repressor of male organ development, while SiMeGI presumably maintained the original function. Later, a segmental duplication event spawned MeGI's regulator OGI on the Y-chromosome, completing the path leading to dioecy, and probably initiating the formation of the Y-chromosome. These findings exemplify how duplication events can provide flexible genetic material available to help respond to varying environments and provide interesting parallels for our understanding of the mechanisms underlying the transition into dieocy in plants.


Asunto(s)
Diospyros/genética , Evolución Molecular , Genoma de Planta/genética , Procesos de Determinación del Sexo , Cromosomas de las Plantas/genética , Diploidia , Flores/genética , Filogenia , Cromosomas Sexuales/genética
6.
PLoS Genet ; 16(5): e1008845, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453757

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1008566.].

7.
BMC Bioinformatics ; 23(1): 265, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804290

RESUMEN

BACKGROUND: Parentage information is fundamental to various life sciences. Recent advances in sequencing technologies have made it possible to accurately infer parentage even in non-model species. The optimization of sets of genome-wide markers is valuable for cost-effective applications but requires extremely large amounts of computation, which presses for the development of new efficient algorithms. RESULTS: Here, for a closed half-sib population, we generalized the process of marker loci selection as a binary integer programming problem. The proposed systematic formulation considered marker localization and the family structure of the potential parental population, resulting in an accurate assignment with a small set of markers. We also proposed an efficient heuristic approach, which effectively improved the number of markers, localization, and tolerance to missing data of the set. Applying this method to the actual genotypes of apple (Malus × domestica) germplasm, we identified a set of 34 SNP markers that distinguished 300 potential parents crossed to a particular cultivar with a greater than 99% accuracy. CONCLUSIONS: We present a novel approach for selecting informative markers based on binary integer programming. Since the data generated by high-throughput sequencing technology far exceeds the requirement for parentage assignment, a combination of the systematic marker selection with targeted SNP genotyping, such as KASP, allows flexibly enlarging the analysis up to a scale that has been unrealistic in various species. The method developed in this study can be directly applied to unsolved large-scale problems in breeding, reproduction, and ecological research, and is expected to lead to novel knowledge in various biological fields. The implementation is available at https://github.com/SoNishiyama/IP-SIMPAT .


Asunto(s)
Paternidad , Polimorfismo de Nucleótido Simple , Algoritmos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento
8.
Plant Cell ; 30(4): 780-795, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29626069

RESUMEN

Dioecy, the presence of male and female flowers on distinct individuals, has evolved independently in multiple plant lineages, and the genes involved in this differential development are just starting to be uncovered in a few species. Here, we used genomic approaches to investigate this pathway in kiwifruits (genus Actinidia). Genome-wide cataloging of male-specific subsequences, combined with transcriptome analysis, led to the identification of a type-C cytokinin response regulator as a potential sex determinant gene in this genus. Functional transgenic analyses in two model systems, Arabidopsis thaliana and Nicotiana tabacum, indicated that this gene acts as a dominant suppressor of carpel development, prompting us to name it Shy Girl (SyGI). Evolutionary analyses in a panel of Actinidia species revealed that SyGI is located in the Y-specific region of the genome and probably arose from a lineage-specific gene duplication. Comparisons with the duplicated autosomal counterpart, and with orthologs from other angiosperms, suggest that the SyGI-specific duplication and subsequent evolution of cis-elements may have played a key role in the acquisition of separate sexes in this species.


Asunto(s)
Actinidia/fisiología , Citocininas/metabolismo , Duplicación de Gen , Reguladores del Crecimiento de las Plantas/metabolismo , Actinidia/genética , Actinidia/crecimiento & desarrollo , Flores/genética , Flores/fisiología
9.
Heredity (Edinb) ; 126(1): 194-205, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873965

RESUMEN

Interspecific hybridization is a common breeding approach for introducing novel traits and genetic diversity to breeding populations. Southern highbush blueberry (SHB) is a blueberry cultivar group that has been intensively bred over the last 60 years. Specifically, it was developed by multiple interspecific crosses between northern highbush blueberry [NHB, Vaccinium corymbosum L. (2n = 4x = 48)] and low-chill Vaccinium species to expand the geographic limits of highbush blueberry production. In this study, we genotyped polyploid blueberries, including 105 SHB, 17 NHB, and 10 rabbiteye blueberry (RE) (Vaccinium virgatum Aiton), from the accessions planted at Poplarville, Mississippi, and accessions distributed in Japan, based on the double-digest restriction site-associated DNA sequencing. The genome-wide SNP data clearly indicated that RE cultivars were genetically distinct from SHB and NHB cultivars, whereas NHB and SHB were genetically indistinguishable. The population structure results appeared to reflect the differences in the allele selection strategies that breeders used for developing germplasm adapted to local climates. The genotype data implied that there are no or very few genomic segments that were commonly introgressed from low-chill Vaccinium species to the SHB genome. Principal component analysis-based outlier detection analysis found a few loci associated with a variable that could partially differentiate NHB and SHB. These SNP loci were detected in Mb-scale haplotype blocks and may be close to the functional genes related to SHB development. Collectively, the data generated in this study suggest a polygenic adaptation of SHB to the southern climate, and may be relevant for future population-scale genome-wide analyses of blueberry.


Asunto(s)
Arándanos Azules (Planta) , Arándanos Azules (Planta)/genética , Estudio de Asociación del Genoma Completo , Genómica , Japón , Metagenómica
10.
Biosci Biotechnol Biochem ; 85(3): 467-475, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33589897

RESUMEN

To investigate the modulation of endogenous indole-3-acetic acid (IAA) level by biosynthesis and inactivation during floral development, IAA and its metabolites were analyzed by LC-ESI/MS/MS in Lychee (Litchi chinensis Sonn.) flowers. In the bloomed flowers, the level of free IAA was higher in males than in females. In contrast, the total sum level of IAA metabolites was higher in females than in males, suggesting a higher biosynthetic activity of IAA in the females before the bloom. A detailed time-course analysis from the bud stage to the developing flower stage showed higher levels of IAA in females than males. The major metabolites were oxidized IAA in both sexes. The results suggest that IAA is involved in the maturation of female floral tissues in lychee, and oxidative metabolism plays an essential role in controlling the free IAA levels therein.


Asunto(s)
Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Litchi/metabolismo , Cromatografía Liquida/métodos , Óvulo Vegetal , Polen , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
11.
Plant J ; 98(1): 97-111, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30556936

RESUMEN

Separating male and female sex organs is one of the main strategies used to maintain genetic diversity within a species. However, the genetic determinants and their regulatory mechanisms have been identified in only a few species. In dioecious persimmons, the homeodomain transcription factor, MeGI, which is the target of a Y chromosome-encoded small-RNA, OGI, can determine floral sexuality. The basic features of this system are conserved in the monoecious hexaploid Oriental persimmon, in which an additional epigenetic regulation of MeGI determines floral sexuality. The downstream regulatory pathways of MeGI remain uncharacterized. In this study, we examined transcriptomic data for male and female flowers from monoecious persimmon cultivars to unveil the gene networks orchestrated by MeGI. A network visualization and cistrome assessment suggested that class-1 KNOTTED-like homeobox (KNOX)/ovate family protein (OFP)/growth regulating factors (GRFs) and short vegetative phase (SVP) genes mediate the differences in gynoecium and androecium development between male and female flowers, respectively. The expression of these genes is directly controlled by MeGI. The gene networks also suggested that some cytokinin, auxin, and gibberellin signaling genes function cooperatively in the KNOX/OFP/GRF pathway during gynoecium differentiation. Meanwhile, SVP may repress PI expression in developing androecia. Overall, our results suggest that MeGI evolved the ability to promote gynoecium development and suppress androecium development by regulating KNOX/OFP/GRF and SVP expression levels, respectively. These insights may help to clarify the molecular mechanism underlying the production of unisexual flowers, while also elucidating the physiological background enabling a single-factor system to establish dioecy in plants.


Asunto(s)
Diospyros/genética , Redes Reguladoras de Genes , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcriptoma , Citocininas/metabolismo , Diospyros/crecimiento & desarrollo , Diospyros/fisiología , Epigénesis Genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética
12.
Plant Cell Physiol ; 61(2): 393-402, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693144

RESUMEN

Epigenetic regulation adds a flexible layer to genetic variations, potentially enabling long-term, but reversible, changes to a trait, while maintaining genetic information. In the hexaploid Oriental persimmon (Diospyros kaki), genetically monoecious cultivars bearing male flowers require the Y-encoded small RNA (smRNA) gene, OGI. This gene represses the expression of its autosomal counterpart gene, MeGI, as part of the canonical male production system. However, a D. kaki cultivar, Saijo, which lacks the OGI gene and originally bears only female flowers, occasionally produces somaclonal mutant male and revertant female (RF) branches. In this study, we investigated the mechanisms underlying these somaclonal sex conversions in persimmon. Specifically, we aimed to unravel how a genetically female tree without the OGI gene can produce male flowers and RF flowers. Applying multi-omics approaches, we revealed that this noncanonical male production system is basically consistent with the canonical system, in which the accumulation of smRNA targeting MeGI and the considerable DNA methylation of MeGI are involved. The epigenetic status of MeGI on CGN and CHG was synchronized to the genome-wide methylation patterns, both in transition to and from the male production system. These results suggest that the somaclonal sex conversions in persimmon are driven by the genome-wide epigenetic regulatory activities. Moreover, flexibility in the epigenetic layers of long-lived plant species (e.g. trees) is important for overcoming genetic robustness.


Asunto(s)
Diospyros/genética , Epigénesis Genética , Poliploidía , Metilación de ADN , Diospyros/crecimiento & desarrollo , Flores/citología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fenotipo , Factores de Transcripción , Árboles
13.
Plant Mol Biol ; 100(4-5): 367-378, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30937702

RESUMEN

KEY MESSAGE: S-RNase was demonstrated to be predominantly recognized by an S locus F-box-like protein and an S haplotype-specific F-box-like protein in compatible pollen tubes of sweet cherry. Self-incompatibility (SI) is a reproductive barrier that rejects self-pollen and inhibits self-fertilization to promote outcrossing. In Solanaceae and Rosaceae, S-RNase-based gametophytic SI (GSI) comprises S-RNase and F-box protein(s) as the pistil and pollen S determinants, respectively. Compatible pollen tubes are assumed to detoxify the internalized cytotoxic S-RNases to maintain growth. S-RNase detoxification is conducted by the Skp1-cullin1-F-box protein complex (SCF) formed by pollen S determinants, S locus F-box proteins (SLFs), in Solanaceae. In Prunus, the general inhibitor (GI), but not pollen S determinant S haplotype-specific F-box protein (SFB), is hypothesized to detoxify S-RNases. Recently, SLF-like proteins 1-3 (SLFL1-3) were suggested as GI candidates, although it is still possible that other proteins function predominantly in GI. To identify the other GI candidates, we isolated four other pollen-expressed SLFL and SFB-like (SFBL) proteins PavSLFL6, PavSLFL7A, PavSFBL1, and PavSFBL2 in sweet cherry. Binding assays with four PavS-RNases indicated that PavSFBL2 bound to PavS1, 6-RNase while the others bound to nothing. PavSFBL2 was confirmed to form an SCF complex in vitro. A co-immunoprecipitation assay using the recombinant PavS6-RNase as bait against pollen extracts and a mass spectrometry analysis identified the SCF complex components of PavSLFLs and PavSFBL2, M-locus-encoded glutathione S-transferase (MGST), DnaJ-like protein, and other minor proteins. These results suggest that SLFLs and SFBLs could act as predominant GIs in Prunus-specific S-RNase-based GSI.


Asunto(s)
Proteínas F-Box/fisiología , Proteínas de Plantas/fisiología , Prunus/metabolismo , Autoincompatibilidad en las Plantas con Flores , Clonación Molecular , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Espectrometría de Masas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Tubo Polínico/fisiología , Prunus/enzimología , Reproducción , Ribonucleasas/química , Ribonucleasas/metabolismo
14.
Plant Cell Physiol ; 60(11): 2464-2477, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31350891

RESUMEN

The shapes of plant organs reflect the evolution of each lineage and have been diversified according to lineage-specific adaptations to environment. Research on the molecular pathways responsible for organ shapes has traditionally been focused mainly on leaves or flowers. Thus, little is known about the pathways controlling fruit shapes, despite their diversity in some plant species. In this study, we analyzed oriental persimmon (Diospyros kaki), which exhibits considerable diversity in fruit shapes among cultivars, to elucidate the underlying molecular mechanism using transcriptomic data and quantitative evaluation. First, to filter the candidate genes associated with persimmon fruit shapes, the whole gene expression patterns obtained using mRNA-Seq analysis from 100 individuals, including a segregated population and various cultivars, were assessed to detect correlations with principal component scores for fruit shapes characterized with elliptic Fourier descriptors. Next, a gene co-expression network analysis with weighted gene co-expression network analysis (WGCNA) package revealed that class 1 KNOX family genes and SEEDSTICK function as integrators along with some phytohormone-related genes, to regulate the fruit shape diversity. On the other hand, the OVATE family genes also contribute to fruit shape diversity, of which pathway would be potentially shared with other plant species. Evolutionary aspects suggest that acquisition of a high lineage-specific and variable expression of class 1 KNOX gene, knotted-like homeobox of Arabidopsis thaliana 1 (KNAT1), in young fruit is important for establishing the persimmon-specific mechanism that determines fruit shape diversity.


Asunto(s)
Diospyros/metabolismo , Flores/metabolismo , Redes Reguladoras de Genes/fisiología , Diospyros/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Redes Reguladoras de Genes/genética
15.
Plant Cell ; 28(12): 2905-2915, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27956470

RESUMEN

Epigenetic regulation can add a flexible layer to genetic variation, potentially enabling long-term but reversible cis-regulatory changes to an allele while maintaining its DNA sequence. Here, we present a case in which alternative epigenetic states lead to reversible sex determination in the hexaploid persimmon Diospyros kaki Previously, we elucidated the molecular mechanism of sex determination in diploid persimmon and demonstrated the action of a Y-encoded sex determinant pseudogene called OGI, which produces small RNAs targeting the autosomal gene MeGI, resulting in separate male and female individuals (dioecy). We contrast these findings with the discovery, in hexaploid persimmon, of an additional layer of regulation in the form of DNA methylation of the MeGI promoter associated with the production of both male and female flowers in genetically male trees. Consistent with this model, developing male buds exhibited higher methylation levels across the MeGI promoter than developing female flowers from either monoecious or female trees. Additionally, a DNA methylation inhibitor induced developing male buds to form feminized flowers. Concurrently, in Y-chromosome-carrying trees, the expression of OGI is silenced by the presence of a SINE (short interspersed nuclear element)-like insertion in the OGI promoter. Our findings provide an example of an adaptive scenario involving epigenetic plasticity.


Asunto(s)
Diospyros/genética , Epigénesis Genética/genética , Poliploidía , Cromosomas de las Plantas/genética , Metilación de ADN/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regiones Promotoras Genéticas/genética
16.
Plant Cell Physiol ; 59(6): 1265-1275, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635538

RESUMEN

The S-RNase-based gametophytic self-incompatibility (GSI) reproduction barrier is important for maintaining genetic diversity in species of the families Solanaceae, Plantaginaceae and Rosaceae. Among the plant taxa with S-RNase-based GSI, Prunus species in the family Rosaceae exhibit Prunus-specific self-incompatibility (SI). Although pistil S and pollen S determinants have been identified, the mechanism underlying SI remains uncharacterized in Prunus species. A putative pollen-part modifier was identified in this study. Disruption of this modifier supposedly confers self-compatibility (SC) to sweet cherry (Prunus avium) 'Cristobalina'. To identify the modifier, genome re-sequencing experiments were completed involving sweet cherry individuals from 18 cultivars and 43 individuals in two segregating populations. Cataloging of subsequences (35 bp kmers) from the obtained genomic reads, while referring to the mRNA sequencing data, enabled the identification of a candidate gene [M locus-encoded GST (MGST)]. Additionally, the insertion of a transposon-like sequence in the putative MGST promoter region in 'Cristobalina' down-regulated MGST expression levels, probably leading to the SC of this cultivar. Phylogenetic, evolutionary and gene expression analyses revealed that MGST may have undergone lineage-specific evolution, and the encoded protein may function differently from the corresponding proteins encoded by GST orthologs in other species, including members of the subfamily Maloideae (Rosaceae). Thus, MGST may be important for Prunus-specific SI. The identification of this novel modifier will expand our understanding of the Prunus-specific GSI system. We herein discuss the possible functions of MGST in the Prunus-specific GSI system.


Asunto(s)
Genes Modificadores/genética , Genoma de Planta/genética , Prunus avium/genética , Ribonucleasas/metabolismo , Autoincompatibilidad en las Plantas con Flores/genética , Biblioteca de Genes , Mutación , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/fisiología , Prunus avium/enzimología , Prunus avium/fisiología , Ribonucleasas/genética , Análisis de Secuencia de ARN
17.
Planta ; 247(3): 733-743, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29188374

RESUMEN

MAIN CONCLUSION: Transcriptome analysis of a persimmon population segregating for an astringency trait in fruit suggested central roles for a limited number of transcriptional regulators in the loss of proanthocyanidin accumulation. Persimmon (Diospyros kaki; 2n = 6x = 90) accumulates a large amount of proanthocyanidins (PAs) in its fruit, resulting in an astringent taste. Persimmon cultivars are classified into four types based on the nature of astringency loss and the amount of PAs at maturity. Pollination constant and non-astringent (PCNA)-type cultivars stop accumulating PAs in the early stages of fruit development and their fruit can be consumed when still firm without the need for artificial deastringency treatments. While the PCNA trait has been shown to be conferred by a recessive allele at a single locus (ASTRINGENCY; AST), the exact genetic determinant remains unidentified. Here, we conducted transcriptome analyses to elucidate the regulatory mechanism underlying this trait using developing fruits of an F1 population segregating for the PCNA trait. Comparisons of the transcriptomes of PCNA and non-PCNA individuals and hierarchical clustering revealed that genes related to the flavonoid pathway and to abiotic stress responses involving light stimulation were expressed coordinately with PA accumulation. Furthermore, coexpression network analyses suggested that three putative transcription factors were central to the PA regulatory network and that at least DkMYB4 and/or DkMYC1, which have been reported to form a protein complex with each other for PA regulation, may have a central role in the differential expression of PA biosynthetic pathway genes between PCNA and non-PCNA.


Asunto(s)
Diospyros/genética , Frutas/metabolismo , Redes Reguladoras de Genes/genética , Diospyros/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Proantocianidinas/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
18.
Plant Mol Biol ; 91(4-5): 459-69, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27071402

RESUMEN

Many species in the Rosaceae, the Solanaceae, and the Plantaginaceae exhibit S-RNase-based gametophytic self-incompatibility (GSI). This system comprises S-ribonucleases (S-RNases) as the pistil S determinant and a single or multiple F-box proteins as the pollen S determinants. In Prunus, pollen specificity is determined by a single S haplotype-specific F-box protein (SFB). The results of several studies suggested that SFB exerts cognate S-RNase cytotoxicity, and a hypothetical general inhibitor (GI) is assumed to detoxify S-RNases in non-specific manner unless it is affected by SFB. Although the identity of the GI is unknown, phylogenetic and evolutionary analyses have indicated that S locus F-box like 1-3 (or S locus F-box with low allelic sequence polymorphism 1-3; SLFL1-3), which are encoded by a region of the Prunus genome linked to the S locus, are good GI candidates. Here, we examined the biochemical characteristics of SLFL1-3 to determine whether they have appropriate GI characteristics. Pull-down assays and quantitative expression analyses indicated that Prunus avium SLFL1-3 mainly formed a canonical SCF complex with PavSSK1 and PavCul1A. Binding assays with PavS(1,3,4,6)-RNases showed that PavSLFL1, PavSLFL2, and PavSLFL3 bound to PavS(3)-RNase, all PavS-RNases tested, and none of the PavS-RNases tested, respectively. Together, these results suggested that SLFL2 has the appropriate characteristics to be the GI in sweet cherry pollen, while SLFL1 may redundantly work with SLFL2 to detoxify all S-RNases. We discuss the possible roles of SLFL1-3 as the GI in the Prunus-specific S-RNase-based GSI mechanism.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas de Plantas/metabolismo , Prunus/enzimología , Prunus/fisiología , Ribonucleasas/metabolismo , Autoincompatibilidad en las Plantas con Flores , Proteínas F-Box/genética , Haplotipos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Plantas/genética , Polen/genética , Especificidad de la Especie
19.
Plant Cell Physiol ; 57(6): 1281-94, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27081098

RESUMEN

Self-incompatibility (SI) is an important plant reproduction mechanism that facilitates the maintenance of genetic diversity within species. Three plant families, the Solanaceae, Rosaceae and Plantaginaceae, share an S-RNase-based gametophytic SI (GSI) system that involves a single S-RNase as the pistil S determinant and several F-box genes as pollen S determinants that act via non-self-recognition. Previous evidence has suggested a specific self-recognition mechanism in Prunus (Rosaceae), raising questions about the generality of the S-RNase-based GSI system. We investigated the evolution of the pollen S determinant by comparing the sequences of the Prunus S haplotype-specific F-box gene (SFB) with those of its orthologs in other angiosperm genomes. Our results indicate that the Prunus SFB does not cluster with the pollen S of other plants and diverged early after the establishment of the Eudicots. Our results further indicate multiple F-box gene duplication events, specifically in the Rosaceae family, and suggest that the Prunus SFB gene originated in a recent Prunus-specific gene duplication event. Transcriptomic and evolutionary analyses of the Prunus S paralogs are consistent with the establishment of a Prunus-specific SI system, and the possibility of subfunctionalization differentiating the newly generated SFB from the original pollen S determinant.


Asunto(s)
Evolución Molecular , Proteínas F-Box/genética , Genes de Plantas , Sitios Genéticos , Prunus/genética , Prunus/fisiología , Ribonucleasas/genética , Autoincompatibilidad en las Plantas con Flores/genética , Proteínas F-Box/metabolismo , Duplicación de Gen/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Variación Genética , Modelos Genéticos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selección Genética , Especificidad de la Especie , Factores de Tiempo
20.
Hortic Res ; 11(6): uhae114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919558

RESUMEN

Establishing an efficient plant regeneration system is a crucial prerequisite for genetic engineering technology in plants. However, the regeneration rate exhibits considerable variability among genotypes, and the key factors underlying shoot regeneration capacity remain largely elusive. Blueberry leaf explants cultured on a medium rich in cytokinins exhibit direct shoot organogenesis without prominent callus formation, which holds promise for expediting genetic transformation while minimizing somatic mutations during culture. The objective of this study is to unravel the molecular and genetic determinants that govern cultivar-specific shoot regeneration potential in highbush blueberry (Vaccinium corymbosum L.). We conducted comparative transcriptome analysis using two highbush blueberry genotypes: 'Blue Muffin' ('BM') displaying a high regeneration rate (>80%) and 'O'Neal' ('ON') exhibiting a low regeneration rate (<10%). The findings revealed differential expression of numerous auxin-related genes; notably, 'BM' exhibited higher expression of auxin signaling genes compared to 'ON'. Among blueberry orthologs of transcription factors involved in meristem formation in Arabidopsis, expression of VcENHANCER OF SHOOT REGENERATION (VcESR), VcWUSCHEL (VcWUS), and VcCUP-SHAPED COTYLEDON 2.1 were significantly higher in 'BM' relative to 'ON'. Exogenous application of auxin promoted regeneration, as well as VcESR and VcWUS expression, whereas inhibition of auxin biosynthesis yielded the opposite effects. Overexpression of VcESR in 'BM' promoted shoot regeneration under phytohormone-free conditions by activating the expression of cytokinin- and auxin-related genes. These findings provide new insights into the molecular mechanisms underlying blueberry regeneration and have practical implications for enhancing plant regeneration and transformation techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA