Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266951

RESUMEN

Interferons induce cell-intrinsic responses associated with resistance to viral infection. To overcome the suppressive action of interferons and their effectors, viruses have evolved diverse mechanisms. Using vesicular stomatitis virus (VSV), we report that the host cell N6-adenosine messenger RNA (mRNA) cap methylase, phosphorylated C-terminal domain interacting factor 1 (PCIF1), attenuates the antiviral response. We employed cell-based and in vitro biochemical assays to demonstrate that PCIF1 efficiently modifies VSV mRNA cap structures to m7Gpppm6Am and define the substrate requirements for this modification. Functional assays revealed that the PCIF1-dependent modification of VSV mRNA cap structures is inert with regard to mRNA stability, translation, and viral infectivity but attenuates the antiviral effects of the treatment of cells with interferon-ß. Cells lacking PCIF1 or expressing a catalytically inactive PCIF1 exhibit an augmented inhibition of viral replication and gene expression following interferon-ß treatment. We further demonstrate that the mRNA cap structures of rabies and measles viruses are also modified by PCIF1 to m7Gpppm6Am This work identifies a function of PCIF1 and cap-proximal m6Am in attenuation of the host response to VSV infection that likely extends to other viruses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interferón beta/inmunología , Proteínas Nucleares/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Estomatitis Vesicular/inmunología , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Interacciones Huésped-Patógeno , Humanos , Interferón beta/genética , Metilación , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Caperuzas de ARN/genética , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Viral/química , ARN Viral/genética , Estomatitis Vesicular/genética , Estomatitis Vesicular/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/química , Virus de la Estomatitis Vesicular Indiana/genética , Replicación Viral
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34635581

RESUMEN

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Asunto(s)
Benzotiazoles/farmacología , Tratamiento Farmacológico de COVID-19 , Oligopéptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/genética , Animales , Benzamidinas/química , Benzotiazoles/farmacocinética , COVID-19/genética , COVID-19/virología , Línea Celular , Diseño de Fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Ésteres/química , Guanidinas/química , Humanos , Pulmón/efectos de los fármacos , Pulmón/virología , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Oligopéptidos/farmacocinética , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/ultraestructura , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 112(25): 7797-802, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056282

RESUMEN

Viruses must gain entry into cells to establish infection. In general, viruses enter either at the plasma membrane or from intracellular endosomal compartments. Viruses that use endosomal pathways are dependent on the cellular factors that control this process; however, these genes have proven to be essential for endogenous cargo uptake, and thus are of limited value for therapeutic intervention. The identification of genes that are selectively required for viral uptake would make appealing drug targets, as their inhibition would block an early step in the life cycle of diverse viruses. At this time, we lack pan-antiviral therapeutics, in part because of our lack of knowledge of such cellular factors. RNAi screening has begun to reveal previously unknown genes that play roles in viral infection. We identified dRNASEK in two genome-wide RNAi screens performed in Drosophila cells against West Nile and Rift Valley Fever viruses. Here we found that ribonuclease kappa (RNASEK) is essential for the infection of human cells by divergent and unrelated positive- and negative-strand-enveloped viruses from the Flaviviridae, Togaviridae, Bunyaviridae, and Orthomyxoviridae families that all enter cells from endosomal compartments. In contrast, RNASEK was dispensable for viruses, including parainfluenza virus 5 and Coxsackie B virus, that enter at the plasma membrane. RNASEK is dispensable for attachment but is required for uptake of these acid-dependent viruses. Furthermore, this requirement appears specific, as general endocytic uptake of transferrin is unaffected in RNASEK-depleted cells. Therefore, RNASEK is a potential host cell Achilles' heel for viral infection.


Asunto(s)
Endocitosis , Fusión de Membrana , Ribonucleasas/metabolismo , Animales , Drosophila , Concentración de Iones de Hidrógeno , Virus de la Fiebre del Valle del Rift/fisiología , Virus del Nilo Occidental/fisiología
4.
Proc Natl Acad Sci U S A ; 112(22): E2920-9, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26038567

RESUMEN

The mosquito-transmitted bunyavirus, Rift Valley fever virus (RVFV), is a highly successful pathogen for which there are no vaccines or therapeutics. Translational arrest is a common antiviral strategy used by hosts. In response, RVFV inhibits two well-known antiviral pathways that attenuate translation during infection, PKR and type I IFN signaling. Despite this, translational arrest occurs during RVFV infection by unknown mechanisms. Here, we find that RVFV infection triggers the decay of core translation machinery mRNAs that possess a 5'-terminal oligopyrimidine (5'-TOP) motif in their 5'-UTR, including mRNAs encoding ribosomal proteins, which leads to a decrease in overall ribosomal protein levels. We find that the RNA decapping enzyme NUDT16 selectively degrades 5'-TOP mRNAs during RVFV infection and this decay is triggered in response to mTOR attenuation via the translational repressor 4EBP1/2 axis. Translational arrest of 5'-TOPs via 4EBP1/2 restricts RVFV replication, and this increased RNA decay results in the loss of visible RNA granules, including P bodies and stress granules. Because RVFV cap-snatches in RNA granules, the increased level of 5'-TOP mRNAs in this compartment leads to snatching of these targets, which are translationally suppressed during infection. Therefore, translation of RVFV mRNAs is compromised by multiple mechanisms during infection. Together, these data present a previously unknown mechanism for translational shutdown in response to viral infection and identify mTOR attenuation as a potential therapeutic avenue against bunyaviral infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas/fisiología , Pirofosfatasas/metabolismo , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN/fisiología , Fiebre del Valle del Rift/metabolismo , Virus de la Fiebre del Valle del Rift/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Modelos Lineales , Luciferasas , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
J Virol ; 85(17): 8870-83, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21697487

RESUMEN

Phosphatidylinositol 4-kinase III alpha (PI4KA) is an essential cofactor of hepatitis C virus (HCV) replication. We initiated this study to determine whether HCV directly engages PI4KA to establish its replication. PI4KA kinase activity was found to be absolutely required for HCV replication using a small interfering RNA transcomplementation assay. Moreover, HCV infection or subgenomic HCV replicons produced a dramatic increase in phosphatidylinositol 4-phosphate (PI4P) accumulation throughout the cytoplasm, which partially colocalized with the endoplasmic reticulum. In contrast, the majority of PI4P accumulated at the Golgi bodies in uninfected cells. The increase in PI4P was not observed after infection with UV-inactivated HCV and did not reflect changes in PI4KA protein or RNA abundance. In an analysis of U2OS cell lines with inducible expression of the HCV polyprotein or individual viral proteins, viral polyprotein expression resulted in enhanced cytoplasmic PI4P production. Increased PI4P accumulation following HCV protein expression was precluded by silencing the expression of PI4KA, but not the related PI4KB. Silencing PI4KA also resulted in aberrant agglomeration of viral replicase proteins, including NS5A, NS5B, and NS3. NS5A alone, but not other viral proteins, stimulated PI4P production in vivo and enhanced PI4KA kinase activity in vitro. Lastly, PI4KA coimmunoprecipitated with NS5A from infected Huh-7.5 cells and from dually transfected 293T cells. In sum, these results suggest that HCV NS5A modulation of PI4KA-dependent PI4P production influences replication complex formation.


Asunto(s)
Hepacivirus/patogenicidad , Interacciones Huésped-Patógeno , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Línea Celular , Citoplasma/química , Retículo Endoplásmico/química , Humanos , Inmunoprecipitación , Antígenos de Histocompatibilidad Menor , Unión Proteica , Mapeo de Interacción de Proteínas
6.
bioRxiv ; 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34131661

RESUMEN

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered a novel class of small molecule ketobenzothiazole TMPRSS2 inhibitors with significantly improved activity over existing irreversible inhibitors Camostat and Nafamostat. Lead compound MM3122 ( 4 ) has an IC 50 of 340 pM against recombinant full-length TMPRSS2 protein, an EC 50 of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV SARS-CoV-2 chimeric virus, and an EC 50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East Respiratory Syndrome Coronavirus (MERS-CoV) cell entry with an EC 50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice with a half-life of 8.6 hours in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.

7.
SSRN ; : 3606354, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32714117

RESUMEN

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2. We also developed a focus reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. We compared the neutralizing activities of monoclonal and polyclonal antibody preparations, as well as ACE2-Fc soluble decoy protein in both assays and find an exceptionally high degree of concordance. The two assays will help define correlates of protection for antibody-based countermeasures including therapeutic antibodies, immune γ-globulin or plasma preparations, and vaccines against SARS-CoV-2. Replication-competent VSV-eGFP-SARSCoV-2 provides a rapid assay for testing inhibitors of SARS-CoV-2 mediated entry that can be performed in 7.5 hours under reduced biosafety containment.

8.
Cell Host Microbe ; 28(3): 475-485.e5, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32735849

RESUMEN

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, which engages with host ACE2 receptor for entry. Using an infectious molecular clone of vesicular stomatitis virus (VSV) expressing eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput-imaging-based neutralization assay at biosafety level 2. We also developed a focus-reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. Comparing the neutralizing activities of various antibodies and ACE2-Fc soluble decoy protein in both assays revealed a high degree of concordance. These assays will help define correlates of protection for antibody-based countermeasures and vaccines against SARS-CoV-2. Additionally, replication-competent VSV-eGFP-SARS-CoV-2 provides a tool for testing inhibitors of SARS-CoV-2 mediated entry under reduced biosafety containment.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Infecciones por Coronavirus/terapia , Peptidil-Dipeptidasa A/inmunología , Neumonía Viral/terapia , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/genética , Betacoronavirus/fisiología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Proteínas Fluorescentes Verdes/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunización Pasiva , Pruebas de Neutralización , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología , Internalización del Virus , Replicación Viral , Sueroterapia para COVID-19
9.
bioRxiv ; 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32511401

RESUMEN

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2. We also developed a focus reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. We compared the neutralizing activities of monoclonal and polyclonal antibody preparations, as well as ACE2-Fc soluble decoy protein in both assays and find an exceptionally high degree of concordance. The two assays will help define correlates of protection for antibody-based countermeasures including therapeutic antibodies, immune γ-globulin or plasma preparations, and vaccines against SARS-CoV-2. Replication-competent VSV-eGFP-SARS-CoV-2 provides a rapid assay for testing inhibitors of SARS-CoV-2 mediated entry that can be performed in 7.5 hours under reduced biosafety containment.

10.
mBio ; 6(2)2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25852164

RESUMEN

UNLABELLED: Upon infection, pathogen recognition leads to a rapidly activated gene expression program that induces antimicrobial effectors to clear the invader. We recently found that Nup98 regulates the expression of a subset of rapidly activated antiviral genes to restrict disparate RNA virus infections in Drosophila by promoting RNA polymerase occupancy at the promoters of these antiviral genes. How Nup98 specifically targets these loci was unclear; however, it is known that Nup98 participates with transcription factors to regulate developmental-gene activation. We reasoned that additional transcription factors may facilitate the Nup98-dependent expression of antiviral genes. In a genome-wide RNA interference (RNAi) screen, we identified a relatively understudied forkhead transcription factor, FoxK, as active against Sindbis virus (SINV) in Drosophila. Here we find that FoxK is active against the panel of viruses that are restricted by Nup98, including SINV and vesicular stomatitis virus (VSV). Mechanistically, we show that FoxK coordinately regulates the Nup98-dependent expression of antiviral genes. Depletion of FoxK significantly reduces Nup98-dependent induction of antiviral genes and reduces the expression of a forkhead response element-containing luciferase reporter. Together, these data show that FoxK-mediated activation of gene expression is Nup98 dependent. We extended our studies to mammalian cells and found that the mammalian ortholog FOXK1 is antiviral against two disparate RNA viruses, SINV and VSV, in human cells. Interestingly, FOXK1 also plays a role in the expression of antiviral genes in mammals: depletion of FOXK1 attenuates virus-inducible interferon-stimulated response element (ISRE) reporter expression. Overall, our results demonstrate a novel role for FOXK1 in regulating the expression of antiviral genes, from insects to humans. IMPORTANCE: Innate immunity is characterized by rapid gene expression programs, from insects to mammals. Furthermore, we find that Nup98, known for its roles in the nuclear pore, plays a noncanonical role in binding the promoters and poising a subset of loci for rapid antiviral gene induction. It was unclear how Nup98 accesses these specific genes, and we here demonstrate that Nup98 cooperates with the transcription factor FoxK to regulate this gene expression program. Depletion of FoxK specifically reduces the induction of Nup98-dependent genes. Further, we find that the antiviral function of FoxK is conserved, as the human ortholog FOXK1 is also antiviral and regulates gene expression from virus-induced promoters. Although other forkhead transcription factors have been implicated in immunity, a role for FoxK in antiviral defense was previously unappreciated. Our findings reveal a conserved and novel role for FoxK in coordinating with Nup98 to promote a robust and complex antiviral transcriptional response.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata , Proteínas de Complejo Poro Nuclear/metabolismo , Virus Sindbis/inmunología , Vesiculovirus/inmunología , Animales , Drosophila , Humanos , Mamíferos
11.
PLoS One ; 8(2): e58056, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23460925

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman's disease, primary effusion lymphoma and Kaposi's sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Regulación hacia Abajo , Herpesvirus Humano 8/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Membrana Celular/metabolismo , Endocitosis , Células HEK293 , Herpesvirus Humano 8/patogenicidad , Humanos , Inmunoprecipitación , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteolisis , Relación Estructura-Actividad , Tirosina/metabolismo , Ubiquitinación , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA