Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(6): 2338-2343, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30651313

RESUMEN

In most flowering plants, the asymmetric cell division of the zygote is the initial step in establishing the apical-basal axis of the mature plant. The zygote is polarized, possessing the nucleus at the apical tip and large vacuoles at the basal end. Despite their known polar localization, whether the positioning of the vacuoles and the nucleus is coordinated and what the role of the vacuole is in the asymmetric zygotic division remain elusive. In the present study, we utilized a live-cell imaging system to visualize the dynamics of vacuoles during the entire process of zygote polarization in Arabidopsis Image analysis revealed that the vacuoles formed tubular strands around the apically migrating nucleus. They gradually accumulated at the basal region and filled the space, resulting in asymmetric distribution in the mature zygote. To assess the role of vacuoles in the zygote, we screened various vacuole mutants and identified that shoot gravitropism2 (sgr2), in which the vacuolar structural change was impaired, failed to form tubular vacuoles and to polarly distribute the vacuole. In sgr2, large vacuoles occupied the apical tip and thus nuclear migration was blocked, resulting in a more symmetric zygotic division. We further observed that tubular vacuole formation and asymmetric vacuolar distribution both depended on the longitudinal array of actin filaments. Overall, our results show that vacuolar dynamics is crucial not only for the polar distribution along actin filaments but also for adequate nuclear positioning, and consequently zygote-division asymmetry.


Asunto(s)
Arabidopsis/fisiología , División Celular Asimétrica , Polaridad Celular , Vacuolas/metabolismo , Cigoto/citología , Cigoto/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Técnica del Anticuerpo Fluorescente , Mutación
2.
Development ; 145(1)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29217754

RESUMEN

The epidermal cell layer and the tissues that lie underneath have different intrinsic functions during plant development. The stem cells within the shoot apical meristem (SAM) that give rise to aerial structures are located in the epidermal and internal tissue layers. However, our understanding of how the functions of these stem cells are coordinated across tissue layers so stem cells can behave as a single population remains limited. WUSCHEL (WUS) functions as a master regulator of stem cell activity. Here, we show that loss of function in the ERECTA (ER)-family receptor kinase genes can rescue the mutant phenotype of wus plants (loss of stem cells), as demonstrated by the reinstated expression of a stem cell marker gene in the SAM epidermis. Localized ER expression in the epidermis can suppress the SAM phenotype caused by loss of ER-family activity. Furthermore, the CLAVATA3- and cytokinin-induced outputs, which contribute to stem cell homeostasis, are dysfunctional in a tissue layer-specific manner in ER-family mutants. Collectively, our findings suggest that the ER family plays a role in the coordination of stem cell behavior between different SAM tissue layers.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Meristema/metabolismo , Familia de Multigenes/fisiología , Epidermis de la Planta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/genética , Epidermis de la Planta/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética
3.
Plant Physiol ; 180(2): 896-909, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30894418

RESUMEN

Pyruvate dehydrogenase is the first enzyme (E1) of the PDH complex (PDC). This multienzyme complex contains E1, E2, and E3 components and controls the entry of carbon into the mitochondrial tricarboxylic acid cycle to enable cellular energy production. The E1 component of the PDC is composed of an E1α catalytic subunit and an E1ß regulatory subunit. In Arabidopsis (Arabidopsis thaliana), there are two mitochondrial E1α homologs encoded by IAA-CONJUGATE-RESISTANT 4 (IAR4) and IAR4-LIKE (IAR4L), and one mitochondrial E1ß homolog. Although IAR4 was reported to be involved in auxin conjugate sensitivity and auxin homeostasis in root development, its precise role remains unknown. Here, we provide experimental evidence that mitochondrial PDC E1 contributes to polar auxin transport during organ development. We performed genetic screens for factors involved in cotyledon development and identified an uncharacterized mutant, macchi-bou 1 (mab1). MAB1 encodes a mitochondrial PDC E1ß subunit that can form both a homodimer and a heterodimer with IAR4. The mab1 mutation impaired MAB1 homodimerization, reduced the abundance of IAR4 and IAR4L, weakened PDC enzymatic activity, and diminished mitochondrial respiration. A metabolomics analysis showed significant changes in metabolites including amino acids in mab1 and, in particular, identified an accumulation of Ala. These results suggest that MAB1 is a component of the Arabidopsis mitochondrial PDC E1. Furthermore, in mab1 mutants and seedlings where the TCA cycle was pharmacologically blocked, we found reduced abundance of the PIN-FORMED (PIN) auxin efflux carriers, possibly due to impaired PIN recycling and enhanced PIN degradation in vacuoles. Therefore, we suggest that mab1 induces defective polar auxin transport via metabolic abnormalities.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ácidos Indolacéticos/farmacología , Mitocondrias/enzimología , Organogénesis/efectos de los fármacos , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Arabidopsis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Meristema/efectos de los fármacos , Meristema/metabolismo , Metabolómica , Mutación/genética , Subunidades de Proteína/metabolismo , Proteolisis/efectos de los fármacos , Plantones/efectos de los fármacos
4.
Plant Cell ; 29(8): 1984-1999, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28765510

RESUMEN

During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1/LAZY1-LIKE1 (LZY1) and AtDRO3/AtNGR1/LZY2 We showed that LZY1, LZY2, and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Gravitación , Familia de Multigenes , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Transducción de Señal , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gravitropismo , Ácidos Indolacéticos/metabolismo , Mutación/genética
5.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824181

RESUMEN

The shoot meristem, a stem-cell-containing tissue initiated during plant embryogenesis, is responsible for continuous shoot organ production in postembryonic development. Although key regulatory factors including KNOX genes are responsible for stem cell maintenance in the shoot meristem, how the onset of such factors is regulated during embryogenesis is elusive. Here, we present evidence that the two KNOX genes STM and KNAT6 together with the two other regulatory genes BLR and LAS are functionally important downstream genes of CUC1 and CUC2, which are a redundant pair of genes that specify the embryonic shoot organ boundary. Combined expression of STM with any of KNAT6, BLR, and LAS can efficiently rescue the defects of shoot meristem formation and/or separation of cotyledons in cuc1cuc2 double mutants. In addition, CUC1 and CUC2 are also required for the activation of KLU, a cytochrome P450-encoding gene known to restrict organ production, and KLU counteracts STM in the promotion of meristem activity, providing a possible balancing mechanism for shoot meristem maintenance. Together, these results establish the roles for CUC1 and CUC2 in coordinating the activation of two classes of genes with opposite effects on shoot meristem activity.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
New Phytol ; 224(2): 749-760, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31310684

RESUMEN

Lateral root (LR) formation in Arabidopsis thaliana is initiated by asymmetric division of founder cells, followed by coordinated cell proliferation and differentiation for patterning new primordia. The sequential developmental processes of LR formation are triggered by a localized auxin response. LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), an auxin-inducible transcription factor, is one of the key regulators linking auxin response in LR founder cells to LR initiation. We identified key genes for LR formation that are activated by LBD16 in an auxin-dependent manner. LBD16 targets identified include the transcription factor gene PUCHI, which is required for LR primordium patterning. We demonstrate that LBD16 activity is required for the auxin-inducible expression of PUCHI. We show that PUCHI expression is initiated after the first round of asymmetric cell division of LR founder cells and that premature induction of PUCHI during the preinitiation phase disrupts LR primordium formation. Our results indicate that LR initiation requires the sequential induction of transcription factors LBD16 and PUCHI.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/genética
7.
Proc Natl Acad Sci U S A ; 113(23): 6562-7, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217573

RESUMEN

Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.


Asunto(s)
Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/farmacología , Proteínas Represoras/genética , Factores de Transcripción/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
8.
New Phytol ; 213(4): 1697-1709, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27891614

RESUMEN

Secondary growth is driven by continuous cell proliferation and differentiation of the cambium that acts as vascular stem cells, producing xylem and phloem to expand vascular tissues laterally. During secondary growth of hypocotyls in Arabidopsis thaliana, the xylem undergoes a drastic phase transition from a parenchyma-producing phase to a fiber-producing phase at the appropriate time. However, it remains to be fully elucidated how progression of secondary growth is properly controlled. We focused on phenotypes of hypocotyl vasculatures caused by double mutation in ERECTA (ER) and ER-LIKE1 (ERL1) receptor-kinase genes to elucidate their roles in secondary growth. ER and ERL1 redundantly suppressed excessive radial growth of the hypocotyl vasculature during secondary growth. ER and ERL1 also prevented premature initiation of the fiber differentiation process mediated by the NAC SECONDARY WALL THICKENING PROMOTING FACTORs in the hypocotyl xylem. Upon floral transition, the hypocotyl xylem gained a competency to respond to GA in a BREVIPEDICELLUS-dependent manner, which was a prerequisite for fiber differentiation. However, even after the floral transition, ER and ERL1 prevented precocious initiation of the GA-mediated fiber formation. Collectively, our findings reveal that ER and ERL1 redundantly prevent premature progression of sequential events in secondary growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/genética , Genes de Plantas , Hipocótilo/crecimiento & desarrollo , Familia de Multigenes , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/efectos de los fármacos , Flores/efectos de los fármacos , Flores/fisiología , Germinación/efectos de los fármacos , Giberelinas/farmacología , Hipocótilo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Xilema/citología , Xilema/efectos de los fármacos , Xilema/crecimiento & desarrollo
9.
Proc Natl Acad Sci U S A ; 111(3): 1198-203, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395791

RESUMEN

In Arabidopsis, leaves and flowers form cyclically in the shoot meristem periphery and are triggered by local accumulations of the plant hormone auxin. Auxin maxima are established by the auxin efflux carrier PIN-formed1 (PIN1). During organ formation, two distinct types of PIN1 polarization occur. First, convergence of PIN1 polarity in the surface of the meristem creates local auxin peaks. Second, basipetal PIN1 polarization causes auxin to move away from the surface in the middle of an incipient organ primordium, thought to contribute to vascular formation. Several mathematical models have been developed in attempts to explain the PIN1 localization pattern. However, the molecular mechanisms that control these dynamic changes are unknown. Here, we show that loss-of-function in the MACCHI-BOU 4 (MAB4) family genes, which encode nonphototropic hypocotyl 3-like proteins and regulate PIN endocytosis, cause deletion of basipetal PIN1 polarization, resulting in extensive auxin accumulation all over the meristem surface from lack of a sink for auxin. These results indicate that the MAB4 family genes establish inward auxin transport from the L1 surface of incipient organ primordia by basipetal PIN1 polarization, and that this behavior is essential for the progression of organ development. Furthermore, the expression of the MAB4 family genes depends on auxin response. Our results define two distinct molecular mechanisms for PIN1 polarization during organ development and indicate that an auxin response triggers the switching between these two mechanisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/química , Fosfoproteínas/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Endocitosis , Flores , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas
10.
Plant Cell Physiol ; 57(6): 1123-32, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27016096

RESUMEN

Plants possess disease resistance (R) proteins encoded by R genes, and each R protein recognizes a specific pathogen factor(s) for immunity. Interestingly, a remarkably high degree of polymorphisms in R genes, which are traces of past mutation events during evolution, suggest the rapid diversification of R genes. However, little is known about molecular aspects that facilitate the rapid change of R genes because of the lack of tools that enable us to monitor de novo R gene mutations efficiently in an experimentally feasible time scale, especially in living plants. Here we introduce a model assay system that enables efficient in planta detection of de novo mutation events in the Arabidopsis thaliana R gene UNI in one generation. The uni-1D mutant harbors a gain-of-function allele of the UNI gene. uni-1D heterozygous individuals originally exhibit dwarfism with abnormally short stems. However, interestingly, morphologically normal stems sometimes emerge spontaneously from the uni-1D plants, and the morphologically reverted tissues carry additional de novo mutations in the UNI gene. Strikingly, under an extreme condition, almost half of the examined population shows the reversion phenomenon. By taking advantage of this phenomenon, we demonstrate that the reversion frequency is remarkably sensitive to a variety of fluctuations in DNA stability, underlying a mutable tendency of the UNI gene. We also reveal that activities of the salicylic acid pathway and DNA damage sensor pathway are involved in the reversion phenomenon. Thus, we provide an experimentally feasible model tool to explore factors and conditions that significantly affect the R gene mutation phenomenon.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Portadoras/genética , Resistencia a la Enfermedad/genética , Mutación/genética , Bleomicina/farmacología , Daño del ADN , ADN de Plantas/metabolismo , Metanosulfonato de Etilo , Genes de Plantas , Sitios Genéticos , Hidroxiurea/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Tallos de la Planta/genética , Polimorfismo de Nucleótido Simple/genética , Ácido Salicílico/metabolismo , Transducción de Señal
11.
Proc Natl Acad Sci U S A ; 109(16): 6337-42, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22474391

RESUMEN

Multicellular organisms achieve final body shape and size by coordinating cell proliferation, expansion, and differentiation. Loss of function in the Arabidopsis ERECTA (ER) receptor-kinase gene confers characteristic compact inflorescence architecture, but its underlying signaling pathways remain unknown. Here we report that the expression of ER in the phloem is sufficient to rescue compact er inflorescences. We further identified two Epidermal Patterning Factor-like (EPFL) secreted peptide genes, EPFL4 and EPFL6/CHALLAH (CHAL), as redundant, upstream components of ER-mediated inflorescence growth. The expression of EPFL4 or EPFL6 in the endodermis, a layer adjacent to phloem, is sufficient to rescue the er-like inflorescence of epfl4 epfl6 plants. EPFL4 and EPFL6 physically associate with ER in planta. Finally, transcriptome analysis of er and epfl4 epfl6 revealed a potential downstream component as well as a role for plant hormones in EPFL4/6- and ER-mediated inflorescence growth. Our results suggest that intercell layer communication between the endodermis and phloem mediated by peptide ligands and a receptor kinase coordinates proper inflorescence architecture in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Inflorescencia/genética , Floema/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Glucuronidasa/metabolismo , Immunoblotting , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Floema/crecimiento & desarrollo , Floema/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Homología de Secuencia de Aminoácido
12.
Plant J ; 76(4): 648-60, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24004104

RESUMEN

The starch-statolith hypothesis proposes that starch-filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so-called 'static' or 'settled' statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom-designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild-type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity-driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity-induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild-type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the 'bottom' of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/fisiología , Gravitropismo , Fosfoglucomutasa/química , Fosfolipasas/química , Brotes de la Planta/química , Plastidios/química , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Centrifugación , Gravitropismo/genética , Hipergravedad , Microscopía de Polarización , Mutación , Fosfoglucomutasa/genética , Fosfoglucomutasa/fisiología , Fosfolipasas/genética , Fosfolipasas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plastidios/genética , Plastidios/fisiología , Dominios RING Finger/genética , Dominios RING Finger/fisiología , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/fisiología
13.
Plant Cell Physiol ; 55(4): 811-22, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24486761

RESUMEN

Plant vacuoles play critical roles in development, growth and stress responses. In mature cells, vacuolar membranes (VMs) display several types of structures, which are formed by invagination and folding of VMs into the lumenal side and can gradually move and change shape. Although such VM structures are observed in a broad range of tissue types and plant species, the molecular mechanism underlying their formation and maintenance remains unclear. Here, we report that a novel HEAT-repeat protein, SHOOT GRAVITROPISM6 (SGR6), of Arabidopsis is involved in the control of morphological changes and dynamics of VM structures in endodermal cells, which are the gravity-sensing cells in shoots. SGR6 is a membrane-associated protein that is mainly localized to the VM in stem endodermal cells. The sgr6 mutant stem exhibits a reduced gravitropic response. Higher plants utilize amyloplast sedimentation as a means to sense gravity direction. Amyloplasts are surrounded by VMs in Arabidopsis endodermal cells, and the flexible and dynamic structure of VMs is important for amyloplast sedimentation. We demonstrated that such dynamic features of VMs are gradually lost in sgr6 endodermal cells during a 30 min observation period. Histological analysis revealed that amyloplast sedimentation was impaired in sgr6. Detailed live-cell imaging analyses revealed that the VM structures in sgr6 had severe defects in morphological changes and dynamics. Our results suggest that SGR6 is a novel protein involved in the formation and/or maintenance of invaginated VM structures in gravity-sensing cells.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Sensación de Gravedad , Inflorescencia/citología , Tallos de la Planta/citología , Vacuolas/metabolismo , Arabidopsis/fisiología , Inflorescencia/fisiología , Membranas Intracelulares/metabolismo , Mutación/genética , Fenotipo , Brotes de la Planta/fisiología , Tallos de la Planta/fisiología , Plastidios/metabolismo , Transporte de Proteínas , Secuencias Repetitivas de Aminoácido
14.
Development ; 138(10): 2069-78, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21490067

RESUMEN

PIN-FORMED (PIN)-dependent auxin transport is essential for plant development and its modulation in response to the environment or endogenous signals. A NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)-like protein, MACCHI-BOU 4 (MAB4), has been shown to control PIN1 localization during organ formation, but its contribution is limited. The Arabidopsis genome contains four genes, MAB4/ENP/NPY1-LIKE1 (MEL1), MEL2, MEL3 and MEL4, highly homologous to MAB4. Genetic analysis disclosed functional redundancy between MAB4 and MEL genes in regulation of not only organ formation but also of root gravitropism, revealing that NPH3 family proteins have a wider range of functions than previously suspected. Multiple mutants showed severe reduction in PIN abundance and PIN polar localization, leading to defective expression of an auxin responsive marker DR5rev::GFP. Pharmacological analyses and fluorescence recovery after photo-bleaching experiments showed that mel mutations increase PIN2 internalization from the plasma membrane, but affect neither intracellular PIN2 trafficking nor PIN2 lateral diffusion at the plasma membrane. Notably, all MAB4 subfamily proteins show polar localization at the cell periphery in plants. The MAB4 polarity was almost identical to PIN polarity. Our results suggest that the MAB4 subfamily proteins specifically retain PIN proteins in a polarized manner at the plasma membrane, thus controlling directional auxin transport and plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Endocitosis , Expresión Génica , Genes de Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Morfogénesis , Mutación , Plantas Modificadas Genéticamente , Transducción de Señal , Distribución Tisular
15.
Plant Cell ; 23(5): 1830-48, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21602290

RESUMEN

Higher plants use the sedimentation of amyloplasts in statocytes as statolith to sense the direction of gravity during gravitropism. In Arabidopsis thaliana inflorescence stem statocyte, amyloplasts are in complex movement; some show jumping-like saltatory movement and some tend to sediment toward the gravity direction. Here, we report that a RING-type E3 ligase SHOOT GRAVITROPISM9 (SGR9) localized to amyloplasts modulates amyloplast dynamics. In the sgr9 mutant, which exhibits reduced gravitropism, amyloplasts did not sediment but exhibited increased saltatory movement. Amyloplasts sometimes formed a cluster that is abnormally entangled with actin filaments (AFs) in sgr9. By contrast, in the fiz1 mutant, an ACT8 semidominant mutant that induces fragmentation of AFs, amyloplasts, lost saltatory movement and sedimented with nearly statically. Both treatment with Latrunculin B, an inhibitor of AF polymerization, and the fiz1 mutation rescued the gravitropic defect of sgr9. In addition, fiz1 decreased saltatory movement and induced amyloplast sedimentation even in sgr9. Our results suggest that amyloplasts are in equilibrium between sedimentation and saltatory movement in wild-type endodermal cells. Furthermore, this equilibrium is the result of the interaction between amyloplasts and AFs modulated by the SGR9. SGR9 may promote detachment of amyloplasts from AFs, allowing the amyloplasts to sediment in the AFs-dependent equilibrium of amyloplast dynamics.


Asunto(s)
Citoesqueleto de Actina/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Gravitropismo/fisiología , Tallos de la Planta/fisiología , Plastidios/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Actinas/genética , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Citoesqueleto/fisiología , ADN Complementario/genética , Sensación de Gravedad/fisiología , Hipocótilo/fisiología , Inflorescencia/fisiología , Mutación , Fenotipo , Raíces de Plantas/fisiología , Tallos de la Planta/genética , Plastidios/genética , ARN de Planta/genética , Ubiquitina-Proteína Ligasas/genética
16.
Plant Cell Physiol ; 54(3): 343-51, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22885615

RESUMEN

Shoot apical meristems (SAMs), which are maintained at the tips of stems, are indeterminate structures and sources of stem cells from which all aerial organs are ultimately derived. Although mechanisms that regulate the homeostasis of the stem cells have been extensively investigated, identification of further unknown regulators should provide better understanding of the regulation. Here, we report that members of the Arabidopsis ERECTA (ER) receptor kinase family redundantly play a significant role in the regulation of stem cell homeostasis. In wild-type seedlings, the expression of WUSCHEL (WUS), a central regulator of the stem cell population, is stimulated by cytokinin. Interestingly, however, the SAM morphology and the expression of CLAVATA3 (CLV3), which is expressed in stem cells and therefore serves as a stem cell marker, are relatively stable against cytokinin treatment regardless of increased WUS expression. These findings indicate the presence of a mechanism to buffer stem cell homeostasis against an increase in cytokinin. Mutant seedlings lacking all ER-family members, which are expressed in the SAM, show an increase in the stem cell population and also the up-regulation of a cytokinin-responsive gene in the SAM. In this mutant, WUS expression is stimulated by cytokinin treatment as efficiently as in wild-type plants. However, in contrast to wild-type plants, SAM morphology and CLV3 expression respond drastically to cytokinin treatment, suggesting that the buffering mechanism to maintain stem cell homeostasis against an increase in cytokinin is severely impaired in this mutant. We suggest that the ER family regulates stem cell homeostasis via buffering its cytokinin responsiveness in the SAM.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Homeostasis , Meristema/citología , Meristema/enzimología , Meristema/genética , Modelos Biológicos , Mutación , Brotes de la Planta/citología , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/citología , Plantones/enzimología , Plantones/genética , Células Madre/citología , Células Madre/fisiología , Regulación hacia Arriba
17.
Development ; 137(4): 607-17, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20110326

RESUMEN

The apical hook of dark-grown Arabidopsis seedlings is a simple structure that develops soon after germination to protect the meristem tissues during emergence through the soil and that opens upon exposure to light. Differential growth at the apical hook proceeds in three sequential steps that are regulated by multiple hormones, principally auxin and ethylene. We show that the progress of the apical hook through these developmental phases depends on the dynamic, asymmetric distribution of auxin, which is regulated by auxin efflux carriers of the PIN family. Several PIN proteins exhibited specific, partially overlapping spatial and temporal expression patterns, and their subcellular localization suggested auxin fluxes during hook development. Genetic manipulation of individual PIN activities interfered with different stages of hook development, implying that specific combinations of PIN genes are required for progress of the apical hook through the developmental phases. Furthermore, ethylene might modulate apical hook development by prolonging the formation phase and strongly suppressing the maintenance phase. This ethylene effect is in part mediated by regulation of PIN-dependent auxin efflux and auxin signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Etilenos/farmacología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Modelos Biológicos , Mutación , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
18.
J Exp Bot ; 64(17): 5335-43, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23881395

RESUMEN

Plant vasculatures are complex tissues consisting of (pro)cambium, phloem, and xylem. The (pro)cambium serves as vascular stem cells that produce all vascular cells. The Arabidopsis ERECTA (ER) receptor kinase is known to regulate the architecture of inflorescence stems. It was recently reported that the er mutation enhances a vascular phenotype induced by a mutation of TDR/PXY, which plays a significant role in procambial proliferation, suggesting that ER participates in vascular development. However, detailed molecular mechanisms of the ER-dependent vascular regulation are largely unknown. Here, this work found that ER and its paralogue, ER-LIKE1, were redundantly involved in procambial development of inflorescence stems. Interestingly, their activity in the phloem was sufficient for vascular regulation. Furthermore, two endodermis-derived peptide hormones, EPFL4 and EPFL6, were redundantly involved in such regulation. It has been previously reported that EPFL4 and EPFL6 act as ligands of phloem-expressed ER for stem elongation. Therefore, these findings indicate that cell-cell communication between the endodermis and the phloem plays an important role in procambial development as well as stem elongation. Interestingly, similar EPFL-ER modules control two distinct developmental events by slightly changing their components: the EPFL4/6-ER module for stem elongation and the EPFL4/6-ER/ERL1 module for vascular development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Péptidos/genética , Transducción de Señal , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Comunicación Celular , Regulación Enzimológica de la Expresión Génica , Genes Reporteros , Inflorescencia/citología , Inflorescencia/enzimología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Ligandos , Modelos Biológicos , Familia de Multigenes , Mutación , Péptidos/metabolismo , Fenotipo , Floema/citología , Floema/enzimología , Floema/genética , Floema/crecimiento & desarrollo , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/enzimología , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Células Madre/fisiología
19.
Plant Cell ; 22(1): 159-72, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20086190

RESUMEN

Arabidopsis thaliana zigzag (zig) is a loss-of-function mutant of Qb-SNARE VTI11, which is involved in membrane trafficking between the trans-Golgi network and the vacuole. zig-1 exhibits abnormalities in shoot gravitropism and morphology. Here, we report that loss-of-function mutants of the retromer large subunit partially suppress the zig-1 phenotype. Moreover, we demonstrate that three paralogous VPS35 genes of Arabidopsis have partially overlapping but distinct genetic functions with respect to zig-1 suppression. Tissue-specific complementation experiments using an endodermis-specific SCR promoter show that expression of VPS35B or VPS35C cannot complement the function of VPS35A. The data suggest the existence of functionally specialized paralogous VPS35 genes that nevertheless share common functions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Gravitropismo , Proteínas Qb-SNARE/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Clonación Molecular , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Mutación , Fenotipo , Regiones Promotoras Genéticas , Proteínas Qb-SNARE/genética , Red trans-Golgi/metabolismo
20.
Am J Bot ; 100(1): 91-100, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115136

RESUMEN

Higher plants have developed statocytes, specialized tissues or cells for gravity sensing, and subsequent signal formation. Root and shoot statocytes commonly harbor a number of amyloplasts, and amyloplast sedimentation in the direction of gravity is a critical process in gravity sensing. However, the molecular mechanism underlying amyloplast-dependent gravity sensing is largely unknown. In this review, we mainly describe the molecular basis for the gravity sensing mechanism, i.e., the molecules and their functions involved in amyloplast sedimentation. Several analyses of statocyte images in living plant organs have implied differences in the regulation of amyloplast movements between root and shoot statocytes. Amyloplasts in shoot statocytes display not only sedimentable but upward, saltatory movements, but the latter are rarely observed in root statocytes. A series of genetic studies on shoot gravitropism mutants of Arabidopsis thaliana has revealed that two intracellular components, the vacuolar membrane (VM) and actin microfilaments (AFs), within the shoot statocyte play important roles in amyloplast dynamics. Flexible VM structures surrounding the amyloplasts seem to allow them to freely sediment toward the bottom of cells. In contrast, long actin cables mediate the saltatory movements of amyloplasts. Thus, amyloplasts in shoot statocytes undergo a dynamic equilibrium of movement, and a proper intracellular environment for statocytes is essential for normal shoot gravitropism. Further analyses to identify the molecular regulators of amyloplast dynamics, including sedimentation, may contribute to an understanding of the gravity sensing mechanism in higher plants.


Asunto(s)
Sensación de Gravedad/fisiología , Fenómenos Fisiológicos de las Plantas , Movimiento/fisiología , Raíces de Plantas/citología , Raíces de Plantas/fisiología , Plastidios/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA