Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 624(7991): 390-402, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092918

RESUMEN

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Mamíferos , Neocórtex , Animales , Humanos , Ratones , Callithrix/genética , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada/genética , Metilación de ADN , Elementos Transponibles de ADN/genética , Epigenoma , Regulación de la Expresión Génica/genética , Macaca/genética , Mamíferos/genética , Corteza Motora/citología , Corteza Motora/metabolismo , Multiómica , Neocórtex/citología , Neocórtex/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Variación Genética/genética
3.
Cell Rep ; 43(9): 114718, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39277859

RESUMEN

Large-scale analysis of single-cell gene expression has revealed transcriptomically defined cell subclasses present throughout the primate neocortex with gene expression profiles that differ depending upon neocortical region. Here, we test whether the interareal differences in gene expression translate to regional specializations in the physiology and morphology of infragranular glutamatergic neurons by performing Patch-seq experiments in brain slices from the temporal cortex (TCx) and motor cortex (MCx) of the macaque. We confirm that transcriptomically defined extratelencephalically projecting neurons of layer 5 (L5 ET neurons) include retrogradely labeled corticospinal neurons in the MCx and find multiple physiological properties and ion channel genes that distinguish L5 ET from non-ET neurons in both areas. Additionally, while infragranular ET and non-ET neurons retain distinct neuronal properties across multiple regions, there are regional morpho-electric and gene expression specializations in the L5 ET subclass, providing mechanistic insights into the specialized functional architecture of the primate neocortex.


Asunto(s)
Neuronas , Transcriptoma , Animales , Neuronas/metabolismo , Neuronas/citología , Transcriptoma/genética , Neocórtex/citología , Neocórtex/metabolismo , Corteza Motora/citología , Corteza Motora/metabolismo , Masculino , Lóbulo Temporal/citología , Lóbulo Temporal/metabolismo , Macaca mulatta
4.
bioRxiv ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39386678

RESUMEN

We present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos. Importantly, we provide detailed information necessary to achieve reliable cell type specific labeling under different experimental contexts. We demonstrate direct pathway circuit-selective optogenetic perturbation of behavior and multiplex labeling of striatal interneuron types for targeted analysis of cellular features. Lastly, we show conserved in vivo activity for exemplary MSN enhancers in rat and macaque. This collection of striatal enhancer AAVs offers greater versatility compared to available transgenic lines and can readily be applied for cell type and circuit studies in diverse mammalian species beyond the mouse model.

5.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131318

RESUMEN

Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome datasets from mouse and macaque spinal cords and discovered putative enhancers for each neuronal population. We cloned these enhancers into adeno-associated viral vectors (AAVs) driving a reporter fluorophore and functionally screened them in mouse. The most promising candidate enhancers were then extensively characterized using imaging and molecular techniques and further tested in rat and macaque to show conservation of LMN labeling. Additionally, we combined enhancer elements into a single vector to achieve simultaneous labeling of upper motor neurons (UMNs) and LMNs. This unprecedented LMN toolkit will enable future investigations of cell type function across species and potential therapeutic interventions for human neurodegenerative diseases.

6.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430038

RESUMEN

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Asunto(s)
Encéfalo , Callithrix , Humanos , Animales , Recién Nacido , Chlorocebus aethiops , Macaca mulatta/genética , Callithrix/genética , Encéfalo/fisiología , Técnicas de Transferencia de Gen , Neuronas , Vectores Genéticos/genética
7.
Res Sq ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36789432

RESUMEN

Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.

8.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711773

RESUMEN

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds and rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and ex vivo human brain slices although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. Vasculature-secreted Hevin (a synaptogenic protein) rescued synaptic deficits in a mouse model.

9.
bioRxiv ; 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066152

RESUMEN

Sequence divergence of cis- regulatory elements drives species-specific traits, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains to be elucidated. We investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset, and mouse with single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome, and chromosomal conformation profiles from a total of over 180,000 cells. For each modality, we determined species-specific, divergent, and conserved gene expression and epigenetic features at multiple levels. We find that cell type-specific gene expression evolves more rapidly than broadly expressed genes and that epigenetic status at distal candidate cis -regulatory elements (cCREs) evolves faster than promoters. Strikingly, transposable elements (TEs) contribute to nearly 80% of the human-specific cCREs in cortical cells. Through machine learning, we develop sequence-based predictors of cCREs in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Lastly, we show that epigenetic conservation combined with sequence similarity helps uncover functional cis -regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.

10.
Nat Commun ; 14(1): 3345, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291094

RESUMEN

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.


Asunto(s)
Células Endoteliales , Roedores , Ratones , Ratas , Animales , Células Endoteliales/metabolismo , Roedores/genética , Macaca mulatta/genética , Encéfalo/metabolismo , Tropismo/genética , Ratones Noqueados , Dependovirus/metabolismo , Vectores Genéticos/genética , Transducción Genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/genética
11.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37790503

RESUMEN

Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and our astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA