Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2312652121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408229

RESUMEN

Metformin is the first-line treatment for type II diabetes patients and a pervasive pollutant with more than 180 million kg ingested globally and entering wastewater. The drug's direct mode of action is currently unknown but is linked to effects on gut microbiomes and may involve specific gut microbial reactions to the drug. In wastewater treatment plants, metformin is known to be transformed by microbes to guanylurea, although genes encoding this metabolism had not been elucidated. In the present study, we revealed the function of two genes responsible for metformin decomposition (mfmA and mfmB) found in isolated bacteria from activated sludge. MfmA and MfmB form an active heterocomplex (MfmAB) and are members of the ureohydrolase protein superfamily with binuclear metal-dependent activity. MfmAB is nickel-dependent and catalyzes the hydrolysis of metformin to dimethylamine and guanylurea with a catalytic efficiency (kcat/KM) of 9.6 × 103 M-1s-1 and KM for metformin of 0.82 mM. MfmAB shows preferential activity for metformin, being able to discriminate other close substrates by several orders of magnitude. Crystal structures of MfmAB show coordination of binuclear nickel bound in the active site of the MfmA subunit but not MfmB subunits, indicating that MfmA is the active site for the MfmAB complex. Mutagenesis of residues conserved in the MfmA active site revealed those critical to metformin hydrolase activity and its small substrate binding pocket allowed for modeling of bound metformin. This study characterizes the products of the mfmAB genes identified in wastewater treatment plants on three continents, suggesting that metformin hydrolase is widespread globally in wastewater.


Asunto(s)
Diabetes Mellitus Tipo 2 , Guanidina/análogos & derivados , Metformina , Microbiota , Urea/análogos & derivados , Humanos , Metformina/metabolismo , Aguas Residuales , Níquel , Hidrolasas/genética , Preparaciones Farmacéuticas
2.
J Biol Chem ; 296: 100055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33172891

RESUMEN

Triuret (carbonyldiurea) is an impurity found in industrial urea fertilizer (<0.1% w/w) that is applied, worldwide, around 300 million pounds each year on agricultural lands. In addition to anthropogenic sources, endogenous triuret has been identified in amoeba and human urine, the latter being diagnostic for hypokalemia. The present study is the first to describe the metabolic breakdown of triuret, which funnels into biuret metabolism. We identified the gene responsible for triuret decomposition (trtA) in bacterial genomes, clustered with biuH, which encodes biuret hydrolase and has close protein sequence homology. TrtA is a member of the isochorismatase-like hydrolase (IHL) protein family, similarly to BiuH, and has a catalytic efficiency (kcat/KM) of 6 x 105 M-1s-1, a KM for triuret of 20 µM, and exquisite substrate specificity. Indeed, TrtA has four orders of magnitude less activity with biuret. Crystal structures of TrtA in apo and holo form were solved and compared with the BiuH structure. The high substrate selectivity was found to be conveyed by second shell residues around each active site. Mutagenesis of residues conserved in TrtA to the alternate consensus found in BiuHs revealed residues critical to triuret hydrolase activity but no single mutant evolved more biuret activity, and likely a combination of mutations is required to interconvert between TrtA, BiuH functions. TrtA-mediated triuret metabolism is relatively rare in recorded genomes (1-2%), but is largely found in plant-associated, nodulating, and endophytic bacteria. This study suggests functions for triuret hydrolase in certain eukaryotic intermediary processes and prokaryotic intermediary or biodegradative metabolism.


Asunto(s)
Hidrolasas/metabolismo , Urea/análogos & derivados , Biodegradación Ambiental , Dominio Catalítico , Cristalografía por Rayos X , Genoma Bacteriano , Hidrolasas/química , Hidrólisis , Cinética , Conformación Proteica , Microbiología del Suelo , Especificidad por Sustrato , Urea/metabolismo
3.
Environ Microbiol ; 24(11): 5202-5216, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054238

RESUMEN

The present study examined the regulatory and metabolic response of the aromatic degrader Pseudomonas putida F1 and its tod operon, controlling toluene degradation, to fluorinated aromatic and aliphatic compounds. The tod operon is upregulated by inducer binding to the TodS sensing domain of a two-component regulator. The induced enzymes include toluene dioxygenase that initiates catabolic assimilation of benzenoid hydrocarbons. Toluene dioxygenase was shown to oxidize 6-fluoroindole to a meta-stable fluorescent product, 6-fluoroindoxyl. The fluorescent output allowed monitoring relative levels of tod operon induction in whole cells using microtiter well plates. Mono- and polyfluorinated aromatic compounds were shown to induce toluene dioxygenase, in some cases to a greater extent than compounds serving as growth substrates. Compounds that are oxidized by toluene dioxygenase and undergoing defluorination were shown to induce their own metabolism. 1,2,4-Trifluorobenzene caused significant induction and computational modelling indicated productive binding to the TodS sensor domain of the TodST regulator. Toluene dioxygenase also showed preferential binding of 1,2,4-trifluorobenzene such that defluorination was favoured. Fluorinated aliphatic compounds were shown to induce toluene dioxygenase. An aliphatic ether with seven fluorine atoms, 1,1,1,2-tetrafluoro-2-trifluoromethoxy-4-iodobutane (TTIB), was an excellent inducer of toluene dioxygenase activity and shown to undergo transformation in cultures of P. putida F1.


Asunto(s)
Pseudomonas putida , Tolueno , Tolueno/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Operón , Pseudomonas putida/metabolismo , Biodegradación Ambiental
4.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741630

RESUMEN

The widely prescribed pharmaceutical metformin and its main metabolite, guanylurea, are currently two of the most common contaminants in surface and wastewater. Guanylurea often accumulates and is poorly, if at all, biodegraded in wastewater treatment plants. This study describes Pseudomonas mendocina strain GU, isolated from a municipal wastewater treatment plant, using guanylurea as its sole nitrogen source. The genome was sequenced with 36-fold coverage and mined to identify guanylurea degradation genes. The gene encoding the enzyme initiating guanylurea metabolism was expressed, and the enzyme was purified and characterized. Guanylurea hydrolase, a newly described enzyme, was shown to transform guanylurea to one equivalent (each) of ammonia and guanidine. Guanidine also supports growth as a sole nitrogen source. Cell yields from growth on limiting concentrations of guanylurea revealed that metabolism releases all four nitrogen atoms. Genes encoding complete metabolic transformation were identified bioinformatically, defining the pathway as follows: guanylurea to guanidine to carboxyguanidine to allophanate to ammonia and carbon dioxide. The first enzyme, guanylurea hydrolase, is a member of the isochorismatase-like hydrolase protein family, which includes biuret hydrolase and triuret hydrolase. Although homologs, the three enzymes show distinct substrate specificities. Pairwise sequence comparisons and the use of sequence similarity networks allowed fine structure discrimination between the three homologous enzymes and provided insights into the evolutionary origins of guanylurea hydrolase.IMPORTANCE Metformin is a pharmaceutical most prescribed for type 2 diabetes and is now being examined for potential benefits to COVID-19 patients. People taking the drug pass it largely unchanged, and it subsequently enters wastewater treatment plants. Metformin has been known to be metabolized to guanylurea. The levels of guanylurea often exceed that of metformin, leading to the former being considered a "dead-end" metabolite. Metformin and guanylurea are water pollutants of emerging concern, as they persist to reach nontarget aquatic life and humans, the latter if it remains in treated water. The present study has identified a Pseudomonas mendocina strain that completely degrades guanylurea. The genome was sequenced, and the genes involved in guanylurea metabolism were identified in three widely separated genomic regions. This knowledge advances the idea that guanylurea is not a dead-end product and will allow for bioinformatic identification of the relevant genes in wastewater treatment plant microbiomes and other environments subjected to metagenomic sequencing.


Asunto(s)
Proteínas Bacterianas/metabolismo , Guanidina/análogos & derivados , Hidrolasas/metabolismo , Redes y Vías Metabólicas , Metformina/metabolismo , Urea/análogos & derivados , Contaminantes Químicos del Agua/metabolismo , Amoníaco/metabolismo , Proteínas Bacterianas/genética , Biodegradación Ambiental , Biomineralización , Genoma Bacteriano/genética , Guanidina/metabolismo , Hidrolasas/genética , Familia de Multigenes , Pseudomonas mendocina/genética , Pseudomonas mendocina/aislamiento & purificación , Pseudomonas mendocina/metabolismo , Especificidad por Sustrato , Urea/metabolismo , Aguas Residuales/microbiología
5.
Biochemistry ; 59(35): 3258-3270, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786413

RESUMEN

Free guanidine is increasingly recognized as a relevant molecule in biological systems. Recently, it was reported that urea carboxylase acts preferentially on guanidine, and consequently, it was considered to participate directly in guanidine biodegradation. Urea carboxylase combines with allophanate hydrolase to comprise the activity of urea amidolyase, an enzyme predominantly found in bacteria and fungi that catalyzes the carboxylation and subsequent hydrolysis of urea to ammonia and carbon dioxide. Here, we demonstrate that urea carboxylase and allophanate hydrolase from Pseudomonas syringae are insufficient to catalyze the decomposition of guanidine. Rather, guanidine is decomposed to ammonia through the combined activities of urea carboxylase, allophanate hydrolase, and two additional proteins of the DUF1989 protein family, expansively annotated as urea carboxylase-associated family proteins. These proteins comprise the subunits of a heterodimeric carboxyguanidine deiminase (CgdAB), which hydrolyzes carboxyguanidine to N-carboxyurea (allophanate). The genes encoding CgdAB colocalize with genes encoding urea carboxylase and allophanate hydrolase. However, 25% of urea carboxylase genes, including all fungal urea amidolyases, do not colocalize with cgdAB. This subset of urea carboxylases correlates with a notable Asp to Asn mutation in the carboxyltransferase active site. Consistent with this observation, we demonstrate that fungal urea amidolyase retains a strong substrate preference for urea. The combined activities of urea carboxylase, carboxyguanidine deiminase and allophanate hydrolase represent a newly recognized pathway for the biodegradation of guanidine. These findings reinforce the relevance of guanidine as a biological metabolite and reveal a broadly distributed group of enzymes that act on guanidine in bacteria.


Asunto(s)
Guanidina/metabolismo , Hidrolasas/metabolismo , Nitrógeno/metabolismo , Pseudomonas syringae/enzimología , Urea/metabolismo , Alofanato Hidrolasa/química , Alofanato Hidrolasa/metabolismo , Amoníaco/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Catálisis , Citrulinación/fisiología , Hidrolasas/química , Redes y Vías Metabólicas/fisiología , Anotación de Secuencia Molecular/normas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Pseudomonas syringae/metabolismo
6.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31676480

RESUMEN

Cyanuric acid is an industrial chemical produced during the biodegradation of s-triazine pesticides. The biodegradation of cyanuric acid has been elucidated using a single model system, Pseudomonas sp. strain ADP, in which cyanuric acid hydrolase (AtzD) opens the s-triazine ring and AtzEG deaminates the ring-opened product. A significant question remains as to whether the metabolic pathway found in Pseudomonas sp. ADP is the exception or the rule in bacterial genomes globally. Here, we show that most bacteria utilize a different pathway, metabolizing cyanuric acid via biuret. The new pathway was determined by reconstituting the pathway in vitro with purified enzymes and by mining more than 250,000 genomes and metagenomes. We isolated soil bacteria that grow on cyanuric acid as a sole nitrogen source and showed that the genome from a Herbaspirillum strain had a canonical cyanuric acid hydrolase gene but different flanking genes. The flanking gene trtB encoded an enzyme that we show catalyzed the decarboxylation of the cyanuric acid hydrolase product, carboxybiuret. The reaction generated biuret, a pathway intermediate further transformed by biuret hydrolase (BiuH). The prevalence of the newly defined pathway was determined by cooccurrence analysis of cyanuric acid hydrolase genes and flanking genes. Here, we show the biuret pathway was more than 1 order of magnitude more prevalent than the original Pseudomonas sp. ADP pathway. Mining a database of over 40,000 bacterial isolates with precise geospatial metadata showed that bacteria with concurrent cyanuric acid and biuret hydrolase genes were distributed throughout the United States.IMPORTANCE Cyanuric acid is produced naturally as a contaminant in urea fertilizer, and it is used as a chlorine stabilizer in swimming pools. Cyanuric acid-degrading bacteria are used commercially in removing cyanuric acid from pool water when it exceeds desired levels. The total volume of cyanuric acid produced annually exceeds 200 million kilograms, most of which enters the natural environment. In this context, it is important to have a global understanding of cyanuric acid biodegradation by microbial communities in natural and engineered systems. Current knowledge of cyanuric acid metabolism largely derives from studies on the enzymes from a single model organism, Pseudomonas sp. ADP. In this study, we obtained and studied new microbes and discovered a previously unknown cyanuric acid degradation pathway. The new pathway identified here was found to be much more prevalent than the pathway previously established for Pseudomonas sp. ADP. In addition, the types of environment, taxonomic prevalences, and geospatial distributions of the different cyanuric acid degradation pathways are described here.


Asunto(s)
Biuret/metabolismo , Comamonas/metabolismo , Contaminantes Ambientales/metabolismo , Herbaspirillum/metabolismo , Pseudomonas/metabolismo , Triazinas/metabolismo , Biodegradación Ambiental
7.
Environ Microbiol ; 20(6): 2099-2111, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29528550

RESUMEN

Biuret is a minor component of urea fertilizer and an intermediate in s-triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest-growing isolate, Herbaspirillum sp. BH-1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH-1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2-11 µmol min-1 mg-1 protein. We then constructed a global protein superfamily network to map structure-function relationships in the BH subfamily and used this to mine > 7000 genomes. High-confidence BH sequences were detected in Actinobacteria, Alpha- and Beta-proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s-triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome-mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems.


Asunto(s)
Bacterias/enzimología , Biodegradación Ambiental , Biuret/metabolismo , Hidrolasas/clasificación , Hidrolasas/metabolismo , Archaea/enzimología , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Chlorophyta/enzimología , Fertilizantes , Hongos/enzimología , Regulación Enzimológica de la Expresión Génica , Genes Bacterianos , Genoma Bacteriano , Indicadores y Reactivos
8.
iScience ; 27(2): 108900, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318350

RESUMEN

Metformin is the first-line treatment for type 2 diabetes, yet its mechanism of action is not fully understood. Recent studies suggest metformin's interactions with gut microbiota are responsible for exerting therapeutic effects. In this study, we report that metformin targets the gut microbial enzyme agmatinase, as a competitive inhibitor, which may impair gut agmatine catabolism. The metformin inhibition constant (Ki) of E. coli agmatinase is 1 mM and relevant in the gut where the drug concentration is 1-10 mM. Metformin analogs phenformin, buformin, and galegine are even more potent inhibitors of E. coli agmatinase (Ki = 0.6, 0.1, and 0.007 mM, respectively) suggesting a shared mechanism. Agmatine is a known effector of human host metabolism and has been reported to augment metformin's therapeutic effects for type 2 diabetes. This gut-derived inhibition mechanism gives new insights on metformin's action in the gut and may lead to significant discoveries in improving metformin therapy.

9.
Front Bioeng Biotechnol ; 10: 1086261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588930

RESUMEN

Metformin is used globally to treat type II diabetes, has demonstrated anti-ageing and COVID mitigation effects and is a major anthropogenic pollutant to be bioremediated by wastewater treatment plants (WWTPs). Metformin is not adsorbed well by activated carbon and toxic N-chloro derivatives can form in chlorinated water. Most earlier studies on metformin biodegradation have used wastewater consortia and details of the genomes, relevant genes, metabolic products, and potential for horizontal gene transfer are lacking. Here, two metformin-biodegrading bacteria from a WWTP were isolated and their biodegradation characterized. Aminobacter sp. MET metabolized metformin stoichiometrically to guanylurea, an intermediate known to accumulate in some environments including WWTPs. Pseudomonas mendocina MET completely metabolized metformin and utilized all the nitrogen atoms for growth. Pseudomonas mendocina MET also metabolized metformin breakdown products sometimes observed in WWTPs: 1-N-methylbiguanide, biguanide, guanylurea, and guanidine. The genome of each bacterium was obtained. Genes involved in the transport of guanylurea in Aminobacter sp. MET were expressed heterologously and shown to serve as an antiporter to expel the toxic guanidinium compound. A novel guanylurea hydrolase enzyme was identified in Pseudomonas mendocina MET, purified, and characterized. The Aminobacter and Pseudomonas each contained one plasmid of 160 kb and 90 kb, respectively. In total, these studies are significant for the bioremediation of a major pollutant in WWTPs today.

10.
Comput Struct Biotechnol J ; 19: 3087-3096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141132

RESUMEN

The OleA enzyme is distinct amongst thiolase enzymes in binding two long (≥C8) acyl chains into structurally-opposed hydrophobic channels, denoted A and B, to carry out a non-decarboxylative Claisen condensation reaction and initiate the biosynthesis of membrane hydrocarbons and ß-lactone natural products. OleA has now been identified in hundreds of diverse bacteria via bioinformatics and high-throughput screening using p-nitrophenyl alkanoate esters as surrogate substrates. In the present study, p-nitrophenyl esters were used to probe the reaction mechanism of OleA and shown to be incorporated into Claisen condensation products for the first time. p-Nitrophenyl alkanoate substrates alone were shown not to undergo Claisen condensation, but co-incubation of p-nitrophenyl esters and CoA thioesters produced mixed Claisen products. Mixed product reactions were shown to initiate via acyl group transfer from a p-nitrophenyl carrier to the enzyme active site cysteine, C143. Acyl chains esterified to p-nitrophenol were synthesized and shown to undergo Claisen condensation with an acyl-CoA substrate, showing potential to greatly expand the range of possible Claisen products. Using p-nitrophenyl 1-13C-decanoate, the Channel A bound thioester chain was shown to act as the Claisen nucleophile, representing the first direct evidence for the directionality of the Claisen reaction in any OleA enzyme. These results both provide new insights into OleA catalysis and open a path for making unnatural hydrocarbon and ß-lactone natural products for biotechnological applications using cheap and easily synthesized p-nitrophenyl esters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA