Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 580(7803): 396-401, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296180

RESUMEN

Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.


Asunto(s)
Neoplasias Cerebelosas/metabolismo , Mutación de Línea Germinal , Meduloblastoma/metabolismo , Factores de Elongación Transcripcional/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Niño , Femenino , Humanos , Masculino , Meduloblastoma/genética , Linaje , ARN de Transferencia/metabolismo , Factores de Elongación Transcripcional/genética
2.
Acta Neuropathol ; 144(4): 733-746, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35982322

RESUMEN

Methylation profiling has radically transformed our understanding of tumors previously called central nervous system primitive neuro-ectodermal tumors (CNS-PNET). While this marks a momentous step toward defining key differences, reclassification has thrown treatment into disarray. To shed light on response to therapy and guide clinical decision-making, we report outcomes and molecular features of children with CNS-PNETs from two multi-center risk-adapted studies (SJMB03 for patients ≥ 3 years; SJYC07 for patients < 3 years) complemented by a non-protocol institutional cohort. Seventy patients who had a histological diagnosis of CNS-PNET or CNS embryonal tumor from one of the new categories that has supplanted CNS-PNET were included. This cohort was molecularly characterized by DNA methylation profiling (n = 70), whole-exome sequencing (n = 53), RNA sequencing (n = 20), and germline sequencing (n = 28). Clinical characteristics were detailed, and treatment was divided into craniospinal irradiation (CSI)-containing (SJMB03 and SJMB03-like) and CSI-sparing therapy (SJYC07 and SJYC07-like). When the cohort was analyzed in its entirety, no differences were observed in the 5-year survival rates even when CSI-containing therapy was compared to CSI-sparing therapy. However, when analyzed by DNA methylation molecular grouping, significant survival differences were observed, and treatment particulars provided suggestions of therapeutic response. Patients with CNS neuroblastoma with FOXR2 activation (CNS-NB-FOXR2) had a 5-year event-free survival (EFS)/overall survival (OS) of 66.7% ± 19.2%/83.3% ± 15.2%, and CIC rearranged sarcoma (CNS-SARC-CIC) had a 5-year EFS/OS both of 57.1% ± 18.7% with most receiving regimens that contained radiation (focal or CSI) and multidrug chemotherapy. Patients with high-grade neuroepithelial tumor with BCOR alteration (HGNET-BCOR) had abysmal responses to upfront chemotherapy-only regimens (5-year EFS = 0%), but survival extended with salvage radiation after progression [5-year OS = 53.6% ± 20.1%]. Patients with embryonal tumor with multilayered rosettes (ETMR) or high-grade glioma/glioblastoma multiforme (HGG/GBM) did not respond favorably to any modality (5-year EFS/OS = 10.7 ± 5.8%/17.9 ± 7.2%, and 10% ± 9.0%/10% ± 9.0%, respectively). As an accompaniment, we have assembled this data onto an interactive website to allow users to probe and query the cases. By reporting on a carefully matched clinical and molecular cohort, we provide the needed insight for future clinical management.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioblastoma , Neoplasias de Células Germinales y Embrionarias , Tumores Neuroectodérmicos Primitivos , Neoplasias Encefálicas/terapia , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/terapia , Niño , Factores de Transcripción Forkhead , Hospitales , Humanos , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/terapia
3.
Cancer ; 126(8): 1749-1757, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31967673

RESUMEN

BACKGROUND: The prognosis for children with recurrent solid tumors generally is poor. Targeting mammalian target of rapamycin (mTOR) and vascular endothelial growth factor A with everolimus and bevacizumab, respectively, synergistically improves progression-free survival and is well tolerated in adults with solid tumors. METHODS: In the current phase 1 study, a total of 15 children with recurrent or refractory solid tumors were treated with bevacizumab and everolimus to establish the maximum tolerated dose, toxicity, and preliminary antitumor response (ClinicalTrials.gov identifier NCT00756340). The authors also evaluated everolimus-mediated inhibition of the mTOR pathway in the peripheral blood mononuclear cells of treated patients. RESULTS: Tumors predominantly were soft tissue and/or bone sarcomas (8 cases) and brain tumors (5 cases). The first 2 patients enrolled at dose level 1 (10 mg/kg of bevacizumab and 4 mg/m2 of everolimus) experienced dose-limiting toxicities (DLTs). The next 5 patients were enrolled at dose level 0 (8 mg/kg of bevacizumab and 4 mg/m2 of everolimus), and DLTs occurred in 2 patients. The authors then modified the protocol to permit expansion of dose 0, and 8 additional patients were added, with no DLTs reported. Of all the patients, stable disease occurred in 4 patients (30.8%; median, 2 courses), and progressive disease occurred in 9 patients (69.2%). Overall survival was 0.59 years (95% CI, 0.24-1.05 years). The mTOR biomarker phospho-4EBP1 Thr/37/46 significantly decreased from baseline to day 27 in peripheral blood mononuclear cells (P = .045). Phospho-AKT levels also decreased from those at baseline. CONCLUSIONS: The maximum tolerated dose of cotreatment with bevacizumab and everolimus was 8 mg/kg of bevacizumab and 4 mg/m2 of everolimus in a 4-week cycle for children with recurrent solid tumors.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/uso terapéutico , Everolimus/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Dosis Máxima Tolerada , Recurrencia Local de Neoplasia/patología , Neoplasias/patología , Pronóstico , Supervivencia sin Progresión
4.
Acta Neuropathol ; 139(1): 193-209, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31563982

RESUMEN

The "isomorphic subtype of diffuse astrocytoma" was identified histologically in 2004 as a supratentorial, highly differentiated glioma with low cellularity, low proliferation and focal diffuse brain infiltration. Patients typically had seizures since childhood and all were operated on as adults. To define the position of these lesions among brain tumours, we histologically, molecularly and clinically analysed 26 histologically prototypical isomorphic diffuse gliomas. Immunohistochemically, they were GFAP-positive, MAP2-, OLIG2- and CD34-negative, nuclear ATRX-expression was retained and proliferation was low. All 24 cases sequenced were IDH-wildtype. In cluster analyses of DNA methylation data, isomorphic diffuse gliomas formed a group clearly distinct from other glial/glio-neuronal brain tumours and normal hemispheric tissue, most closely related to paediatric MYB/MYBL1-altered diffuse astrocytomas and angiocentric gliomas. Half of the isomorphic diffuse gliomas had copy number alterations of MYBL1 or MYB (13/25, 52%). Gene fusions of MYBL1 or MYB with various gene partners were identified in 11/22 (50%) and were associated with an increased RNA-expression of the respective MYB-family gene. Integrating copy number alterations and available RNA sequencing data, 20/26 (77%) of isomorphic diffuse gliomas demonstrated MYBL1 (54%) or MYB (23%) alterations. Clinically, 89% of patients were seizure-free after surgery and all had a good outcome. In summary, we here define a distinct benign tumour class belonging to the family of MYB/MYBL1-altered gliomas. Isomorphic diffuse glioma occurs both in children and adults, has a concise morphology, frequent MYBL1 and MYB alterations and a specific DNA methylation profile. As an exclusively histological diagnosis may be very challenging and as paediatric MYB/MYBL1-altered diffuse astrocytomas may have the same gene fusions, we consider DNA methylation profiling very helpful for their identification.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Adulto , Neoplasias Encefálicas/patología , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Metilación de ADN , Femenino , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Fusión de Oncogenes , Adulto Joven
5.
Nature ; 506(7489): 451-5, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24553141

RESUMEN

Members of the nuclear factor-κB (NF-κB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-κB signalling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-κB activity in cancer. Here we show that more than two-thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-κB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-κB target genes, and rapidly transformed neural stem cells--the cell of origin of ependymoma--to form these tumours in mice. Our data identify a highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.


Asunto(s)
Transformación Celular Neoplásica , Ependimoma/genética , Ependimoma/metabolismo , FN-kappa B/metabolismo , Proteínas/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Secuencia de Bases , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular , Núcleo Celular/metabolismo , Transformación Celular Neoplásica/genética , Cromosomas Humanos Par 11/genética , Ependimoma/patología , Femenino , Humanos , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , FN-kappa B/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas/genética , Factor de Transcripción ReIA/genética , Factores de Transcripción , Translocación Genética/genética , Proteínas Señalizadoras YAP
6.
Acta Neuropathol ; 136(2): 211-226, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29909548

RESUMEN

Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of > 90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors.


Asunto(s)
Ependimoma/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Infratentoriales/genética , Mutación/genética , Proteínas Oncogénicas/genética , Metilación de ADN , Ependimoma/clasificación , Ependimoma/patología , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Histonas/genética , Humanos , Neoplasias Infratentoriales/clasificación , Neoplasias Infratentoriales/patología , Masculino , Transfección
7.
Pediatr Blood Cancer ; 65(7): e27035, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29512900

RESUMEN

BACKGROUND: Progressive/recurrent high-grade and diffuse intrinsic pontine gliomas (DIPGs) are fatal. Treatments targeting molecular pathways critical for these cancers are needed. METHODS: We conducted a phase 1 study (rolling-six design) to establish the safety and maximum tolerated dose (MTD) of dasatinib, an oral platelet-derived growth factor receptor A (PDGFRA) inhibitor, and crizotinib, an oral c-Met inhibitor, in such patients. Pharmacokinetics of both agents were performed. Biomarkers of cellular pathway activation in peripheral-blood mononuclear cells (PBMC) were evaluated before and after administration of dasatinib. PDGFRA and MET amplification, and PDGFRA mutations were studied in tumor samples. RESULTS: Twenty-five patients were enrolled in this study (median age: 11.9 years). Eleven patients had DIPG. Glioblastoma accounted for 40% of cases. Dasatinib at 50 mg/m2 and crizotinib at 130 mg/m2 or 100 mg/m2 were poorly tolerated when administered twice daily. Drug administration was then switched to once daily. Dasatinib administered at 50 mg/m2 and crizotinib at 215 mg/m2 once daily was the MTD. Dose-limiting toxicities consisted of diarrhea, fatigue, proteinuria, hyponatremia, rash, and grade 4 neutropenia. Only two patients received therapy for at least 6 months. No objective radiologic responses were observed. Pharmacokinetics of dasatinib and crizotinib were comparable to previous studies. A statistically significant decrease in the ratio of p-AKT/total AKT in PBMC occurred after dasatinib administration. PDGFRA and MET amplification were found in four and two cases, respectively. Only one of 10 tumors harbored a PDGFRA mutation. CONCLUSIONS: This drug combination was poorly tolerated and its activity was minimal. We do not recommend further testing of this combination in children.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Glioma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adolescente , Adulto , Neoplasias del Tronco Encefálico/patología , Niño , Preescolar , Crizotinib/administración & dosificación , Dasatinib/administración & dosificación , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Lactante , Masculino , Dosis Máxima Tolerada , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Distribución Tisular , Adulto Joven
8.
Acta Neuropathol ; 131(6): 833-45, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26810070

RESUMEN

Low-grade neuroepithelial tumors (LGNTs) are diverse CNS tumors presenting in children and young adults, often with a history of epilepsy. While the genetic profiles of common LGNTs, such as the pilocytic astrocytoma and 'adult-type' diffuse gliomas, are largely established, those of uncommon LGNTs remain to be defined. In this study, we have used massively parallel sequencing and various targeted molecular genetic approaches to study alterations in 91 LGNTs, mostly from children but including young adult patients. These tumors comprise dysembryoplastic neuroepithelial tumors (DNETs; n = 22), diffuse oligodendroglial tumors (d-OTs; n = 20), diffuse astrocytomas (DAs; n = 17), angiocentric gliomas (n = 15), and gangliogliomas (n = 17). Most LGNTs (84 %) analyzed by whole-genome sequencing (WGS) were characterized by a single driver genetic alteration. Alterations of FGFR1 occurred frequently in LGNTs composed of oligodendrocyte-like cells, being present in 82 % of DNETs and 40 % of d-OTs. In contrast, a MYB-QKI fusion characterized almost all angiocentric gliomas (87 %), and MYB fusion genes were the most common genetic alteration in DAs (41 %). A BRAF:p.V600E mutation was present in 35 % of gangliogliomas and 18 % of DAs. Pathogenic alterations in FGFR1/2/3, BRAF, or MYB/MYBL1 occurred in 78 % of the series. Adult-type d-OTs with an IDH1/2 mutation occurred in four adolescents, the youngest aged 15 years at biopsy. Despite a detailed analysis, novel genetic alterations were limited to two fusion genes, EWSR1-PATZ1 and SLMAP-NTRK2, both in gangliogliomas. Alterations in BRAF, FGFR1, or MYB account for most pathogenic alterations in LGNTs, including pilocytic astrocytomas, and alignment of these genetic alterations and cytologic features across LGNTs has diagnostic implications. Additionally, therapeutic options based upon targeting the effects of these alterations are already in clinical trials.


Asunto(s)
Neoplasias Encefálicas/patología , Genes myb , Predisposición Genética a la Enfermedad , Glioma/genética , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Adolescente , Adulto , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Niño , Preescolar , Proteínas de Unión al ADN , Femenino , Ganglioglioma/genética , Ganglioglioma/patología , Glioma/patología , Humanos , Lactante , Masculino , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ARN , Transactivadores/genética , Factores de Transcripción , Adulto Joven
9.
Genome Res ; 21(4): 505-14, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21393386

RESUMEN

Gene fusions involving members of the RAF family of protein kinases have recently been identified as characteristic aberrations of low-grade astrocytomas, the most common tumors of the central nervous system in children. While it has been shown that these fusions cause constitutive activation of the ERK/MAPK pathway, very little is known about their formation. Here, we present a detailed analysis of RAF gene fusion breakpoints from a well-characterized cohort of 43 low-grade astrocytomas. Our findings show that the rearrangements that generate these RAF gene fusions may be simple or complex and that both inserted nucleotides and microhomology are common at the DNA breakpoints. Furthermore, we identify novel enrichment of microhomologous sequences in the regions immediately flanking the breakpoints. We thus provide evidence that the tandem duplications responsible for these fusions are generated by microhomology-mediated break-induced replication (MMBIR). Although MMBIR has previously been implicated in the pathogenesis of other diseases and the evolution of eukaryotic genomes, we demonstrate here that the proposed details of MMBIR are consistent with a recurrent rearrangement in cancer. Our analysis of repetitive elements, Z-DNA and sequence motifs in the fusion partners identified significant enrichment of the human minisatellite conserved sequence/χ-like element at one side of the breakpoint. Therefore, in addition to furthering our understanding of low-grade astrocytomas, this study provides insights into the molecular mechanistic details of MMBIR and the sequence of events that occur in the formation of genomic rearrangements.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Puntos de Rotura del Cromosoma , Fusión Génica/genética , Quinasas raf/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Replicación del ADN/genética , Orden Génico , Reordenamiento Génico/genética , Humanos , Lactante , Masculino , Repeticiones de Minisatélite , Modelos Genéticos , Datos de Secuencia Molecular , Alineación de Secuencia , Adulto Joven
10.
Neuro Oncol ; 26(1): 178-190, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37503880

RESUMEN

BACKGROUND: High-grade gliomas (HGG) in young children pose a challenge due to favorable but unpredictable outcomes. While retrospective studies broadened our understanding of tumor biology, prospective data is lacking. METHODS: A cohort of children with histologically diagnosed HGG from the SJYC07 trial was augmented with nonprotocol patients with HGG treated at St. Jude Children's Research Hospital from November 2007 to December 2020. DNA methylome profiling and whole genome, whole exome, and RNA sequencing were performed. These data were integrated with histopathology to yield an integrated diagnosis. Clinical characteristics and preoperative imaging were analyzed. RESULTS: Fifty-six children (0.0-4.4 years) were identified. Integrated analysis split the cohort into four categories: infant-type hemispheric glioma (IHG), HGG, low-grade glioma (LGG), and other-central nervous system (CNS) tumors. IHG was the most prevalent (n = 22), occurred in the youngest patients (median age = 0.4 years), and commonly harbored receptor tyrosine kinase gene fusions (7 ALK, 2 ROS1, 3 NTRK1/2/3, 4 MET). The 5-year event-free (EFS) and overall survival (OS) for IHG was 53.13% (95%CI: 35.52-79.47) and 90.91% (95%CI: 79.66-100.00) vs. 0.0% and 16.67% (95%CI: 2.78-99.74%) for HGG (p = 0.0043, p = 0.00013). EFS and OS were not different between IHG and LGG (p = 0.95, p = 0.43). Imaging review showed IHGs are associated with circumscribed margins (p = 0.0047), hemispheric location (p = 0.0010), and intratumoral hemorrhage (p = 0.0149). CONCLUSIONS: HGG in young children is heterogeneous and best defined by integrating histopathological and molecular features. Patients with IHG have relatively good outcomes, yet they endure significant deficits, making them good candidates for therapy de-escalation and trials of molecular targeted therapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Lactante , Humanos , Preescolar , Estudios Retrospectivos , Estudios Prospectivos , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética
11.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38260392

RESUMEN

Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.

12.
Neuro Oncol ; 25(2): 386-397, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35652336

RESUMEN

BACKGROUND: Recurrent atypical teratoid/rhabdoid tumor (AT/RT) is, most often, a fatal pediatric malignancy with limited curative options. METHODS: We conducted a phase II study of Aurora kinase A inhibitor alisertib in patients aged <22 years with recurrent AT/RT. Patients received alisertib once daily (80 mg/m2 as enteric-coated tablets or 60 mg/m2 as liquid formulation) on Days 1-7 of a 21-day cycle until progressive disease (PD) occurred. Alisertib plasma concentrations were measured in cycle 1 on Days 1 (single dose) and 7 (steady state) and analyzed with noncompartmental pharmacokinetics. Trial efficacy end point was ≥10 participants with stable disease (SD) or better at 12 weeks. RESULTS: SD (n = 8) and partial response (PR) (n = 1) were observed among 30 evaluable patients. Progression-free survival (PFS) was 30.0% ± 7.9% at 6 months and 13.3% ± 5.6% at 1 year. One-year overall survival (OS) was 36.7% ± 8.4%. Two patients continued treatment for >12 months. PFS did not differ by AT/RT molecular groups. Neutropenia was the most common adverse effect (n = 23/30, 77%). The 22 patients who received liquid formulation had a higher mean maximum concentration (Cmax) of 10.1 ± 3.0 µM and faster time to Cmax (Tmax = 1.2 ± 0.7 h) than those who received tablets (Cmax = 5.7 ± 2.4 µM, Tmax = 3.4 ± 1.4 h). CONCLUSIONS: Although the study did not meet predetermined efficacy end point, single-agent alisertib was well tolerated by children with recurrent AT/RT, and SD or PR was observed in approximately a third of the patients.


Asunto(s)
Antineoplásicos , Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Niño , Humanos , Antineoplásicos/uso terapéutico , Tumor Rabdoide/tratamiento farmacológico , Azepinas/uso terapéutico , Pirimidinas/uso terapéutico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Aurora Quinasa A , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos
13.
Cancer Cell ; 39(11): 1519-1530.e4, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678152

RESUMEN

Nearly one-third of children with medulloblastoma, a malignant embryonal tumor of the cerebellum, succumb to their disease. Conventional response monitoring by imaging and cerebrospinal fluid (CSF) cytology remains challenging, and a marker for measurable residual disease (MRD) is lacking. Here, we show the clinical utility of CSF-derived cell-free DNA (cfDNA) as a biomarker of MRD in serial samples collected from children with medulloblastoma (123 patients, 476 samples) enrolled on a prospective trial. Using low-coverage whole-genome sequencing, tumor-associated copy-number variations in CSF-derived cfDNA are investigated as an MRD surrogate. MRD is detected at baseline in 85% and 54% of patients with metastatic and localized disease, respectively. The number of MRD-positive patients declines with therapy, yet those with persistent MRD have significantly higher risk of progression. Importantly, MRD detection precedes radiographic progression in half who relapse. Our findings advocate for the prospective assessment of CSF-derived liquid biopsies in future trials for medulloblastoma.


Asunto(s)
Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Neoplasias Cerebelosas/diagnóstico , Meduloblastoma/diagnóstico , Secuenciación Completa del Genoma/métodos , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/líquido cefalorraquídeo , Neoplasias Cerebelosas/genética , Niño , Inestabilidad Cromosómica , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Femenino , Humanos , Biopsia Líquida , Masculino , Meduloblastoma/líquido cefalorraquídeo , Meduloblastoma/genética , Neoplasia Residual , Estudios Prospectivos
14.
Clin Cancer Res ; 27(10): 2879-2889, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33737307

RESUMEN

PURPOSE: Report relevance of molecular groups to clinicopathologic features, germline SMARCB1/SMARCA4 alterations (GLA), and survival of children with atypical teratoid rhabdoid tumor (ATRT) treated in two multi-institutional clinical trials. MATERIALS AND METHODS: Seventy-four participants with newly diagnosed ATRT were treated in two trials: infants (SJYC07: age < 3 years; n = 52) and children (SJMB03: age 3-21 years; n = 22), using surgery, conventional chemotherapy (infants), or dose-dense chemotherapy with autologous stem cell rescue (children), and age- and risk-adapted radiotherapy [focal (infants) and craniospinal (CSI; children)]. Molecular groups ATRT-MYC (MYC), ATRT-SHH (SHH), and ATRT-TYR (TYR) were determined from tumor DNA methylation profiles. RESULTS: Twenty-four participants (32%) were alive at time of analysis at a median follow-up of 8.4 years (range, 3.1-14.1 years). Methylation profiling classified 64 ATRTs as TYR (n = 21), SHH (n = 30), and MYC (n = 13), SHH group being associated with metastatic disease. Among infants, TYR group had the best overall survival (OS; P = 0.02). However, outcomes did not differ by molecular groups among infants with nonmetastatic (M0) disease. Children with M0 disease and <1.5 cm2 residual tumor had a 5-year progression-free survival (PFS) of 72.7 ± 12.7% and OS of 81.8 ± 11%. Infants with M0 disease had a 5-year PFS of 39.1 ± 11.5% and OS of 51.8 ± 12%. Those with metastases fared poorly [5-year OS 25 ± 12.5% (children) and 0% (infants)]. SMARCB1 GLAs were not associated with PFS. CONCLUSIONS: Among infants, those with ATRT-TYR had the best OS. ATRT-SHH was associated with metastases and consequently with inferior outcomes. Children with nonmetastatic ATRT benefit from postoperative CSI and adjuvant chemotherapy.


Asunto(s)
Biomarcadores de Tumor , Tumor Rabdoide/diagnóstico , Tumor Rabdoide/etiología , Teratoma/diagnóstico , Teratoma/etiología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Metilación de ADN , Diagnóstico Diferencial , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Mutación de Línea Germinal , Humanos , Lactante , Masculino , Mutación , Pronóstico , Tumor Rabdoide/mortalidad , Tumor Rabdoide/terapia , Proteína SMARCB1/genética , Teratoma/mortalidad , Teratoma/terapia , Resultado del Tratamiento
15.
J Clin Oncol ; 39(7): 822-835, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33405951

RESUMEN

PURPOSE: SJMB03 (ClinicalTrials.gov identifier: NCT00085202) was a phase III risk-adapted trial that aimed to determine the frequency and clinical significance of biological variants and genetic alterations in medulloblastoma. PATIENTS AND METHODS: Patients 3-21 years old were stratified into average-risk and high-risk treatment groups based on metastatic status and extent of resection. Medulloblastomas were molecularly classified into subgroups (Wingless [WNT], Sonic Hedgehog [SHH], group 3, and group 4) and subtypes based on DNA methylation profiles and overlaid with gene mutations from next-generation sequencing. Coprimary study end points were (1) to assess the relationship between ERBB2 protein expression in tumors and progression-free survival (PFS), and (2) to estimate the frequency of mutations associated with WNT and SHH tumors. Clinical and molecular risk factors were evaluated, and the most robust were used to model new risk-classification categories. RESULTS: Three hundred thirty eligible patients with medulloblastoma were enrolled. Five-year PFS was 83.2% (95% CI, 78.4 to 88.2) for average-risk patients (n = 227) and 58.7% (95% CI, 49.8 to 69.1) for high-risk patients (n = 103). No association was found between ERBB2 status and PFS in the overall cohort (P = .74) or when patients were stratified by clinical risk (P = .71). Mutations in CTNNB1 (96%), DDX3X (37%), and SMARCA4 (24%) were most common in WNT tumors and PTCH1 (38%), TP53 (21%), and DDX3X (19%) in SHH tumors. Methylome profiling classified 53 WNT (17.4%), 48 SHH (15.7%), 65 group 3 (21.3%), and 139 group 4 (45.6%) tumors. A comprehensive clinicomolecular risk factor analysis identified three low-risk groups (WNT, low-risk SHH, and low-risk combined groups 3 and 4) with excellent (5-year PFS > 90%) and two very high-risk groups (high-risk SHH and high-risk combined groups 3 and 4) with poor survival (5-year PFS < 60%). CONCLUSION: These results establish a new risk stratification for future medulloblastoma trials.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/terapia , Metilación de ADN , Meduloblastoma/terapia , Mutación , Adolescente , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Niño , Preescolar , Análisis Mutacional de ADN , Epigenoma , Epigenómica , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Meduloblastoma/genética , Meduloblastoma/mortalidad , Meduloblastoma/secundario , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Adulto Joven
16.
J Cell Physiol ; 222(3): 509-14, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19937730

RESUMEN

Low-grade astrocytomas (LGAs) are the most common type of brain tumor in children. Until recently, very little was known about the underlying biology and molecular genetics of these tumors. However, within the past year a number of studies have shown that the MAPK pathway is constitutively activated in a high proportion of LGAs. Several genetic aberrations which generate this deregulation of the MAPK pathway have been identified, most notably gene fusions between KIAA1549 and BRAF. In this review we summarize these findings, discuss how these gene fusions may arise and consider possible implications for diagnosis and treatment.


Asunto(s)
Astrocitoma/enzimología , Neoplasias Encefálicas/enzimología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Adolescente , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Niño , Preescolar , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Fusión Génica , Humanos , Lactante , Recién Nacido , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
17.
Acta Neuropathol ; 120(6): 731-43, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21046410

RESUMEN

Recent studies of genetic abnormalities in pediatric low-grade gliomas (LGGs) have focused on activation of the ERK/MAPK pathway by KIAA1549-BRAF gene fusions in the majority of pilocytic astrocytomas (PAs) and by rare mutations in elements of the pathway across histopathologically diverse LGGs. This study reports that MYB, an oncogene not previously implicated in gliomagenesis, is activated in a diverse subset of pediatric LGGs. The study cohort comprised 57 pediatric LGGs and a comparative cohort of 59 pediatric high-grade gliomas (HGGs). The LGG cohort included 34 PAs and 23 diffuse gliomas; fibrillary astrocytomas (n = 14), oligodendroglial tumors (n = 7), and angiocentric gliomas (n = 2). MYB copy number abnormalities were disclosed using Affymetrix 6.0 SNP arrays and confirmed using interphase fluorescence in situ hybridization. Novel MYB amplifications that upregulate MYB RNA and protein expression were demonstrated in 2/14 diffuse astrocytomas. In addition, focal deletion of the terminal region of MYB was seen in 1 of 2 angiocentric gliomas (AGs). Increased expression of MYB was demonstrated by quantitative RT-PCR and immunohistochemistry. MYB upregulation at the protein level was demonstrated in a proportion of diffuse LGGs (60%), pilocytic astrocytomas (41%), and HGGs (19%), but abnormalities at the genomic level were only a feature of diffuse gliomas. Our data suggest that MYB may have a role in a subset of pediatric gliomas, through a variety of mechanisms in addition to MYB amplification and deletion.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Aberraciones Cromosómicas , Glioma/genética , Mutación/genética , Proteínas Oncogénicas v-myb/genética , Regulación hacia Arriba/genética , Adolescente , Distribución por Edad , Factores de Edad , Niño , Preescolar , Estudios de Cohortes , Femenino , Amplificación de Genes/genética , Eliminación de Gen , Predisposición Genética a la Enfermedad/genética , Glioma/metabolismo , Humanos , Masculino , Proteínas Oncogénicas v-myb/biosíntesis
18.
J Pathol ; 218(2): 172-81, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19373855

RESUMEN

We report genetic aberrations that activate the ERK/MAP kinase pathway in 100% of posterior fossa pilocytic astrocytomas, with a high frequency of gene fusions between KIAA1549 and BRAF among these tumours. These fusions were identified from analysis of focal copy number gains at 7q34, detected using Affymetrix 250K and 6.0 SNP arrays. PCR and sequencing confirmed the presence of five KIAA1549-BRAF fusion variants, along with a single fusion between SRGAP3 and RAF1. The resulting fusion genes lack the auto-inhibitory domains of BRAF and RAF1, which are replaced in-frame by the beginning of KIAA1549 and SRGAP3, respectively, conferring constitutive kinase activity. An activating mutation of KRAS was identified in the single pilocytic astrocytoma without a BRAF or RAF1 fusion. Further fusions and activating mutations in BRAF were identified in 28% of grade II astrocytomas, highlighting the importance of the ERK/MAP kinase pathway in the development of paediatric low-grade gliomas.


Asunto(s)
Astrocitoma/enzimología , Neoplasias Encefálicas/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Adolescente , Adulto , Astrocitoma/genética , Neoplasias Encefálicas/genética , Niño , Preescolar , Análisis Mutacional de ADN , ADN Complementario/análisis , Activación Enzimática , Proteínas Activadoras de GTPasa/genética , Humanos , Lactante , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/genética , Adulto Joven
19.
Neuro Oncol ; 22(8): 1203-1213, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32052049

RESUMEN

BACKGROUND: Management of unresectable pediatric low-grade glioma and glioneuronal tumor (LGG/LGGNT) is controversial. There are no validated prognostic features to guide use of radiation therapy (RT). Our study aimed to identify negative prognostic features in patients treated with RT using clinicopathologic and molecular data and validate these findings in an external dataset. METHODS: Children with non-metastatic, biopsy-proven unresectable LGG/LGGNT treated with RT at a single institution between 1997 and 2017 were identified. Recursive partitioning analysis (RPA) was used to stratify patients into low- and high-risk prognostic groups based on overall survival (OS). CNS9702 data were used for validation. RESULTS: One hundred and fifty patients met inclusion criteria. Median follow-up was 11.4 years. RPA yielded low- and high-risk groups with 10-year OS of 95.6% versus 76.4% (95% CI: 88.7%-98.4% vs 59.3%-87.1%, P = 0.003), respectively. These risk groups were validated using CNS9702 dataset (n = 48) (4-year OS: low-risk vs high-risk: 100% vs 64%, P < 0.001). High-risk tumors included diffuse astrocytoma or location within thalamus/midbrain. Low-risk tumors included pilocytic astrocytoma/ganglioglioma located outside of the thalamus/midbrain. In the subgroup with known BRAF status (n = 49), risk stratification remained prognostic independently of BRAF alteration (V600E or fusion). Within the high-risk group, delayed RT, defined as RT after at least one line of chemotherapy, was associated with a further decrement in overall survival (P = 0.021). CONCLUSION: A high-risk subgroup of patients, defined by diffuse astrocytoma histology or midbrain/thalamus tumor location, have suboptimal long-term survival and might benefit from timely use of RT. These results require validation.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Adolescente , Astrocitoma/patología , Astrocitoma/radioterapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Niño , Preescolar , Femenino , Glioma/patología , Glioma/radioterapia , Humanos , Lactante , Masculino , Pronóstico , Medición de Riesgo , Adulto Joven
20.
Cancer Cell ; 37(4): 569-583.e5, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32289278

RESUMEN

Pediatric low-grade gliomas (pLGG) are frequently driven by genetic alterations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway yet show unexplained variability in their clinical outcome. To address this, we characterized a cohort of >1,000 clinically annotated pLGG. Eighty-four percent of cases harbored a driver alteration, while those without an identified alteration also often exhibited upregulation of the RAS/MAPK pathway. pLGG could be broadly classified based on their alteration type. Rearrangement-driven tumors were diagnosed at a younger age, enriched for WHO grade I histology, infrequently progressed, and rarely resulted in death as compared with SNV-driven tumors. Further sub-classification of clinical-molecular correlates stratified pLGG into risk categories. These data highlight the biological and clinical differences between pLGG subtypes and opens avenues for future treatment refinement.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Glioma/genética , Mutación , Adolescente , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/patología , Niño , Preescolar , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Glioma/clasificación , Glioma/patología , Humanos , Lactante , Recién Nacido , Masculino , Proteínas Quinasas Activadas por Mitógenos/genética , Neurofibromina 1/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA