Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Microsc Microanal ; : 1-9, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36082682

RESUMEN

We report on the automatic alignment of a transmission electron microscope equipped with an orbital angular momentum sorter using a convolutional neural network. The neural network is able to control all relevant parameters of both the electron-optical setup of the microscope and the external voltage source of the sorter without input from the user. It can compensate for mechanical and optical misalignments of the sorter, in order to optimize its spectral resolution. The alignment is completed over a few frames and can be kept stable by making use of the fast fitting time of the neural network.

2.
J Synchrotron Radiat ; 28(Pt 5): 1343-1356, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475283

RESUMEN

Imaging of biomolecules by ionizing radiation, such as electrons, causes radiation damage which introduces structural and compositional changes of the specimen. The total number of high-energy electrons per surface area that can be used for imaging in cryogenic electron microscopy (cryo-EM) is severely restricted due to radiation damage, resulting in low signal-to-noise ratios (SNR). High resolution details are dampened by the transfer function of the microscope and detector, and are the first to be lost as radiation damage alters the individual molecules which are presumed to be identical during averaging. As a consequence, radiation damage puts a limit on the particle size and sample heterogeneity with which electron microscopy (EM) can deal. Since a transmission EM (TEM) image is formed from the scattering process of the electron by the specimen interaction potential, radiation damage is inevitable. However, we can aim to maximize the information transfer for a given dose and increase the SNR by finding alternatives to the conventional phase-contrast cryo-EM techniques. Here some alternative transmission electron microscopy techniques are reviewed, including phase plate, multi-pass transmission electron microscopy, off-axis holography, ptychography and a quantum sorter. Their prospects for providing more or complementary structural information within the limited lifetime of the sample are discussed.


Asunto(s)
Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/ultraestructura , Electrones , Relación Señal-Ruido , Relación Estructura-Actividad
3.
Phys Rev Lett ; 126(9): 094802, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33750150

RESUMEN

The component of orbital angular momentum (OAM) in the propagation direction is one of the fundamental quantities of an electron wave function that describes its rotational symmetry and spatial chirality. Here, we demonstrate experimentally an electrostatic sorter that can be used to analyze the OAM states of electron beams in a transmission electron microscope. The device achieves postselection or sorting of OAM states after electron-material interactions, thereby allowing the study of new material properties such as the magnetic states of atoms. The required electron-optical configuration is achieved by using microelectromechanical systems technology and focused ion beam milling to control the electron phase electrostatically with a lateral resolution of 50 nm. An OAM resolution of 1.5ℏ is realized in tests on controlled electron vortex beams, with the perspective of reaching an optimal OAM resolution of 1ℏ in the near future.

4.
Phys Chem Chem Phys ; 22(46): 26728-26741, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33078790

RESUMEN

Loss mechanisms in fluid heating of cobalt ferrite (CFO) nanoparticles and CFO-Pd heterodimer colloidal suspensions are investigated as a function of particle size, fluid concentration and magnetic field amplitude. The specific absorption rate (SAR) is found to vary with increasing particle size due to a change in dominant heating mechanism from susceptibility to hysteresis and frictional loss. The maximum SAR is obtained for particle diameters of 11-15 nm as a result of synergistic contributions of susceptibility loss, including Néel and Brownian relaxation and especially hysteresis loss, thereby validating the applicability of linear response theory to superparamagnetic CFO nanoparticles. Our results show that the ferrofluid concentration and magnetic field amplitude alter interparticle interactions and associated heating efficiency. The SAR of the CFO nanoparticles could be maximized by adjusting the synthesis parameters. Despite the paramagnetic properties of individual palladium nanoparticles, CFO-Pd heterodimer suspensions were observed to have surprisingly improved magnetization as well as SAR values, when compared with CFO ferrofluids. This difference is attributed to interfacial interactions between the magnetic moments of paramagnetic Pd and superparamagnetic/ferrimagnetic CFO. SAR values measured from CFO-Pd heterodimer suspensions were found to be 47-52 W gFerrite-1, which is up to a factor of two higher than the SAR values of commercially available ferrofluids, demonstrating their potential as efficient heat mediators. Our results provide insight into the utilization of CFO-Pd heterodimer suspensions as potential nanoplatforms for diagnostic and therapeutic biomedical applications, e.g., in cancer hyperthermia, cryopreserved tissue warming, thermoablative therapy, drug delivery and bioimaging.


Asunto(s)
Cobalto/química , Compuestos Férricos/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Paladio/química , Calor , Campos Magnéticos , Tamaño de la Partícula
5.
Nat Mater ; 17(3): 221-225, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29403052

RESUMEN

In order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties1-3, experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism 4 and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr2FeMoO6, opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.

6.
Nat Mater ; 17(3): 290, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29445245

RESUMEN

In Fig. 1 of the version of this Letter originally published, the word 'Subtract' was missing from the green box to the left of panel f. This has now been corrected in all versions of the Letter.

7.
Phys Rev Lett ; 120(15): 156101, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756849

RESUMEN

An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe_{2} flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.

8.
Opt Express ; 25(18): 21851-21860, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-29041477

RESUMEN

Recent progress in phase modulation using nanofabricated electron holograms has demonstrated how the phase of an electron beam can be controlled. In this paper, we apply this concept to the correction of spherical aberration in a scanning transmission electron microscope and demonstrate an improvement in spatial resolution. Such a holographic approach to spherical aberration correction is advantageous for its simplicity and cost-effectiveness.

9.
Microsc Microanal ; 20(6): 1817-25, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25382667

RESUMEN

Solid oxide fuel cells (SOFCs) are promising candidates for use in alternative energy technologies. A full understanding of the reaction mechanisms in these dynamic material systems is required to optimize device performance and overcome present limitations. Here, we show that in situ transmission electron microscopy (TEM) can be used to study redox reactions and ionic conductivity in SOFCs in a gas environment at elevated temperature. We examine model ultrathin half and complete cells in two environmental TEMs using off-axis electron holography and electron energy-loss spectroscopy. Our results from the model cells provide insight into the essential phenomena that are important for the operation of commercial devices. Changes in the activities of dopant cations in the solid electrolyte are detected during oxygen anion conduction, demonstrating the key role of dopants in electrolyte architecture in SOFCs.

10.
Small Methods ; : e2400081, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686691

RESUMEN

High energy density electrochemical systems such as metal batteries suffer from uncontrollable dendrite growth on cycling, which can severely compromise battery safety and longevity. This originates from the thermodynamic preference of metal nucleation on electrode surfaces, where obtaining the crucial information on metal deposits in terms of crystal orientation, plated volume, and growth rate is very challenging. In situ liquid phase transmission electron microscopy (LPTEM) is a promising technique to visualize and understand electrodeposition processes, however a detailed quantification of which presents significant difficulties. Here by performing Zn electroplating and analyzing the data via basic image processing, this work not only sheds new light on the dendrite growth mechanism but also demonstrates a workflow showcasing how dendritic deposition can be visualized with volumetric and growth rate information. These results along with additionally corroborated 4D STEM analysis take steps to access information on the crystallographic orientation of the grown Zn nucleates and toward live quantification of in situ electrodeposition processes.

11.
Ultramicroscopy ; 245: 113663, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566529

RESUMEN

The key to optimizing spatial resolution in a state-of-the-art scanning transmission electron microscope is the ability to measure and correct for electron optical aberrations of the probe-forming lenses precisely. Several diagnostic methods for aberration measurement and correction have been proposed, albeit often at the cost of relatively long acquisition times. Here, we illustrate how artificial intelligence can be used to provide near-real-time diagnosis of aberrations from individual Ronchigrams. The demonstrated speed of aberration measurement is important because microscope conditions can change rapidly. It is also important for the operation of MEMS-based hardware correction elements, which have less intrinsic stability than conventional electromagnetic lenses.


Asunto(s)
Electrones , Lentes , Microscopía Electrónica de Transmisión de Rastreo/métodos , Inteligencia Artificial , Redes Neurales de la Computación
12.
J Vis Exp ; (191)2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36744797

RESUMEN

With the ever-increasing use of Li-ion batteries, especially due to their adoption in electric vehicles, their safety is in prime focus. Thus, the all-solid-state batteries (ASSBs) that use solid electrolytes instead of liquid electrolytes, which reduce the risk of flammability, have been the center stage of battery research for the last few years. However, in the ASSB, the ion transportation through the solid-solid electrolyte-electrode interface poses a challenge due to contact and chemical/electrochemical stability issues. Applying a suitable coating around the electrode and/or electrolyte particles offers a convenient solution, leading to better performance. For this, researchers are screening potential electronic/ionic conductive and nonconductive coatings to find the best coatings with suitable thickness for long-term chemical, electrochemical, and mechanical stability. Operando transmission electron microscopy (TEM) couples high spatial resolution with high temporal resolution to allow visualization of dynamic processes, and thus is an ideal tool to evaluate electrode/electrolyte coatings via studying (de)lithiation at a single particle level in real-time. However, the accumulated electron dose during a typical high-resolution in situ work may affect the electrochemical pathways, evaluation of which can be time-consuming. The current protocol presents an alternative procedure in which the potential coatings are applied on Si nanoparticles and are subjected to (de)lithiation during operando TEM experiments. The high volume changes of Si nanoparticles during (de)lithiation allow monitoring of the coating behavior at a relatively low magnification. Thus, the whole process is very electron-dose efficient and offers quick screening of potential coatings.


Asunto(s)
Suministros de Energía Eléctrica , Electricidad , Conductividad Eléctrica , Electrodos , Microscopía Electrónica de Transmisión
13.
Nat Nanotechnol ; 18(12): 1430-1438, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37666941

RESUMEN

Dirac materials are characterized by the emergence of massless quasiparticles in their low-energy excitation spectrum that obey the Dirac Hamiltonian. Known examples of Dirac materials are topological insulators, d-wave superconductors, graphene, and Weyl and Dirac semimetals, representing a striking range of fundamental properties with potential disruptive applications. However, none of the Dirac materials identified so far shows metallic character. Here, we present evidence for the formation of free-standing molybdenene, a two-dimensional material composed of only Mo atoms. Using MoS2 as a precursor, we induced electric-field-assisted molybdenene growth under microwave irradiation. We observe the formation of millimetre-long whiskers following screw-dislocation growth, consisting of weakly bonded molybdenene sheets, which, upon exfoliation, show metallic character, with an electrical conductivity of ~940 S m-1. Molybdenene when hybridized with two-dimensional h-BN or MoS2, fetch tunable optical and electronic properties. As a proof of principle, we also demonstrate applications of molybdenene as a surface-enhanced Raman spectroscopy platform for molecular sensing, as a substrate for electron imaging and as a scanning probe microscope cantilever.

14.
Chem Commun (Camb) ; 58(19): 3130-3133, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35129189

RESUMEN

Conformal coating of silicon (Si) anode particles is a common strategy for improving their mechanical integrity, to mitigate battery capacity fading due to particle volume expansion, which can result in particle crumbling due to lithiation induced strain and excessive solid-electrolyte interface formation. Here, we use operando transmission electron microscopy in an open cell to show that TiO2 coatings on Si/SiO2 particles undergo thickness dependent rupture on battery cycling where thicker coatings crumble more readily than thinner (∼5 nm) coatings, which corroborates the difference in their capacities.

15.
Ultramicroscopy ; 231: 113287, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33926773

RESUMEN

The orbital angular momentum (OAM) sorter is an electron optical device for the measurement of an electron's OAM. It is based on two phase elements, which are referred to as an "unwrapper" and a "corrector" and are located in Fourier conjugate planes. The simplest implementation of the sorter is based on electrostatic phase elements, such as a charged needle for the unwrapper and electrodes with alternating charges or potentials for the corrector. Here, we use a formal analogy between phase shifts introduced by charges and vertical currents to propose alternative designs for the sorter elements, which are based on phase shifts introduced by magnetic fields. We use this concept to provide a general guide for phase element design, which promises to provide improved reliability of phase control in electron optics.

16.
Ultramicroscopy ; 208: 112861, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31670053

RESUMEN

The orbital angular momentum (OAM) sorter is a new electron optical device for measuring an electron's OAM. It is based on two phase elements, which are referred to as the "unwrapper" and "corrector" and are placed in Fourier-conjugate planes in an electron microscope. The most convenient implementation of this concept is based on the use of electrostatic phase elements, such as a charged needle as the unwrapper and a set of electrodes with alternating charges as the corrector. Here, we use simulations to assess the role of imperfections in such a device, in comparison to an ideal sorter. We show that the finite length of the needle and the boundary conditions introduce astigmatism, which leads to detrimental cross-talk in the OAM spectrum. We demonstrate that an improved setup comprising three charged needles can be used to compensate for this aberration, allowing measurements with a level of cross-talk in the OAM spectrum that is comparable to the ideal case.

17.
Sci Rep ; 9(1): 10458, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320696

RESUMEN

The key features of quantum mechanics are vividly illustrated by the Young-Feynman two-slit thought experiment, whose second part discusses the recording of an electron distribution with one of the two slits partially or totally closed by an aperture. Here, we realize the original Feynman proposal in a modern electron microscope equipped with a high brightness gun and two biprisms, with one of the biprisms used as a mask. By exciting the microscope lenses to conjugate the biprism plane with the slit plane, observations are carried out in the Fraunhofer plane with nearly ideal control of the covering of one of the slits. A second, new experiment is also presented, in which interference phenomena due to partial overlap of the slits are observed in the image plane. This condition is obtained by inserting the second biprism between the two slits and the first biprism and by biasing it in order to overlap their images.

18.
Nanoscale Adv ; 1(7): 2772-2782, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36132722

RESUMEN

Developing convenient and reliable synthetic methodologies for solution processable 2D layered ultrathin nanostructures with lateral size control is one of the major challenges for practical applications. In this study, a rational understanding a long-chain amphiphilic surfactant assisted non-hydrolytic synthesis that is able to generate dimension-controllable 2D-WS2 nanocrystal flakes in a single-step protocol is proposed. The evolution of the starting soft organic-inorganic lamellar template into ultrathin few-layer 2D-WS2 nanostructures with lateral size modulation over a range between 3 and 30 nm is monitored. The initial formation of WS2 nanoseeds occurs in a self-assembled sacrificial precursor source, acting as a template, where larger two-dimensional nanostructures can grow without undergoing significant thickness variation. Overall, the chemical nature and steric hindrance of the alkylamines are essential to modulate the reactivity of such WS2 nanoclusters, which correlate with the lateral size of the resulting nanoflakes.

19.
Sci Rep ; 9(1): 9002, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227748

RESUMEN

Two-dimensional transition-metal dichalcolgenides (2D-TMDs) are among the most intriguing materials for next-generation electronic and optoelectronic devices. Albeit still at the embryonic stage, building thin films by manipulating and stacking preformed 2D nanosheets is now emerging as a practical and cost-effective bottom-up paradigm to obtain excellent electrical properties over large areas. Herein, we exploit the ultrathin morphology and outstanding solution stability of 2D WS2 colloidal nanocrystals to make thin films of TMDs assembled on a millimetre scale by a layer-by-layer deposition approach. We found that a room-temperature surface treatment with a superacid, performed with the precise scope of removing the native insulating surfactants, promotes in-plane assembly of the colloidal WS2 nanoflakes into stacks parallel to the substrate, along with healing of sulphur vacancies in the lattice that are detrimental to electrical conductivity. The as-obtained 2D WS2 thin films, characterized by a smooth and compact morphology, feature a high planar conductivity of up to 1 µS, comparable to the values reported for epitaxially grown WS2 monolayers, and enable photocurrent generation upon light irradiation over a wide range of visible to near-infrared frequencies.

20.
Sci Rep ; 8(1): 5592, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618785

RESUMEN

A novel device that can be used as a tunable support-free phase plate for transmission electron microscopy of weakly scattering specimens is described. The device relies on the generation of a controlled phase shift by the magnetic field of a segment of current-carrying wire that is oriented parallel or antiparallel to the electron beam. The validity of the concept is established using both experimental electron holographic measurements and a theoretical model based on Ampere's law. Computer simulations are used to illustrate the resulting contrast enhancement for studies of biological cells and macromolecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA