Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626557

RESUMEN

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Lipopolisacáridos/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Quimiocinas/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Imagen Molecular , Receptores de Quimiocina
2.
J Nucl Cardiol ; 29(3): 1266-1276, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33420659

RESUMEN

BACKGROUND: Metabolic divergence of macrophages polarized into different phenotypes represents a mechanistically relevant target for non-invasive characterization of atherosclerotic plaques using positron emission tomography (PET). Carbon-11 (11C)-labeled acetate is a clinically available tracer which accumulates in atherosclerotic plaques, but its biological and clinical correlates in atherosclerosis are undefined. METHODS AND RESULTS: Histological correlates of 14C-acetate uptake were determined in brachiocephalic arteries of western diet-fed apoE-/- mice. The effect of polarizing stimuli on 14C-acetate uptake was determined by proinflammatory (interferon-γ + lipopolysaccharide) vs inflammation-resolving (interleukin-4) stimulation of murine macrophages and human carotid endarterectomy specimens over 2 days. 14C-acetate accumulated in atherosclerotic regions of arteries. CD68-positive monocytes/macrophages vs smooth muscle actin-positive smooth muscle cells were the dominant cells in regions with high vs low 14C-acetate uptake. 14C-acetate uptake progressively decreased in proinflammatory macrophages to 25.9 ± 4.5% of baseline (P < .001). A delayed increase in 14C-acetate uptake was induced in inflammation-resolving macrophages, reaching to 164.1 ± 21.4% (P < .01) of baseline. Consistently, stimulation of endarterectomy specimens with interferon-γ + lipopolysaccharide decreased 14C-acetate uptake to 66.5 ± 14.5%, while interleukin-4 increased 14C-acetate uptake to 151.5 ± 25.8% compared to non-stimulated plaques (P < .05). CONCLUSIONS: Acetate uptake by macrophages diverges upon proinflammatory and inflammation-resolving stimulation, which may be exploited for immunometabolic characterization of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Acetatos/metabolismo , Animales , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Humanos , Inflamación/diagnóstico por imagen , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Tomografía Computarizada por Rayos X
5.
Arterioscler Thromb Vasc Biol ; 37(10): 1840-1848, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798141

RESUMEN

OBJECTIVE: Despite the early promising results of 18F-fluorodeoxyglucose positron emission tomography for assessment of vessel wall inflammation, its accuracy in prospective identification of vulnerable plaques has remained limited. Additionally, previous studies have indicated that 18F-fluorodeoxyglucose uptake alone may not allow for accurate identification of specific macrophage activation states. We aimed to determine whether combined measurement of glucose and glutamine accumulation-the 2 most important bioenergetic substrates for macrophages-improves the distinction of macrophage inflammatory states and can be utilized to image atherosclerosis. APPROACH AND RESULTS: Murine peritoneal macrophages (MΦ) were activated ex vivo into proinflammatory states with either lipopolysaccharide (MΦLPS) or interferon-γ+tumor necrosis factor-α (MΦIFN-γ+TNF-α). An alternative polarization phenotype was induced with interleukin-4 (MΦIL-4). The pronounced increase in 2-deoxyglucose uptake distinguishes MΦLPS from MΦIFN-γ+TNF-α, MΦIL-4, and unstimulated macrophages (MΦ0). Despite having comparable levels of 2-deoxyglucose accumulation, MΦIL-4 can be distinguished from both MΦIFN-γ+TNF-α and MΦ0 based on the enhanced glutamine accumulation, which was associated with increased expression of a glutamine transporter, Slc1a5. Ex vivo autoradiography experiments demonstrated distinct and heterogenous patterns of 18F-fluorodeoxyglucose and 14C-glutamine accumulation in atherosclerotic lesions of low-density lipoprotein receptor-null mice fed a high-fat diet. CONCLUSIONS: Combined assessment of glutamine and 2-deoxyglucose accumulation improves the ex vivo identification of macrophage activation states. Combined ex vivo metabolic imaging demonstrates heterogenous and distinct patterns of substrate accumulation in atherosclerotic lesions. Further studies are required to define the in vivo significance of glutamine uptake in atherosclerosis and its potential application in identification of vulnerable plaques.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Desoxiglucosa/metabolismo , Fluorodesoxiglucosa F18 , Glutamina/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Aorta/diagnóstico por imagen , Aorta/metabolismo , Aterosclerosis/metabolismo , Autorradiografía , Ratones , Placa Aterosclerótica/metabolismo
6.
Radiology ; 283(1): 87-97, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27849433

RESUMEN

Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Inflamación/diagnóstico por imagen , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/metabolismo , Tomografía de Emisión de Positrones , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Inflamación/metabolismo , Ratones , Radiofármacos
8.
J Nucl Cardiol ; 21(6): 1112-28; quiz 1129, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25124827

RESUMEN

Over the past decade, significant progress has been made in the development of novel imaging strategies focusing on the biology of the vessel wall for identification of vulnerable plaques. While the majority of these studies are still in the pre-clinical stage, few techniques (e.g., (18)F-FDG and (18)F-NaF PET imaging) have already been evaluated in clinical studies with promising results. Here, we will briefly review the pathobiology of atherosclerosis and discuss molecular imaging strategies that have been developed to target these events, with an emphasis on mechanisms that are associated with atherosclerotic plaque vulnerability.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Imagen Molecular/métodos , Radiofármacos/farmacocinética , Tomografía Computarizada de Emisión/métodos , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Medición de Riesgo
9.
Sci Adv ; 10(25): eadm9817, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896611

RESUMEN

Precision management of fibrotic lung diseases is challenging due to their diverse clinical trajectories and lack of reliable biomarkers for risk stratification and therapeutic monitoring. Here, we validated the accuracy of CMKLR1 as an imaging biomarker of the lung inflammation-fibrosis axis. By analyzing single-cell RNA sequencing datasets, we demonstrated CMKLR1 expression as a transient signature of monocyte-derived macrophages (MDMφ) enriched in patients with idiopathic pulmonary fibrosis (IPF). Consistently, we identified MDMφ as the major driver of the uptake of CMKLR1-targeting peptides in a murine model of bleomycin-induced lung fibrosis. Furthermore, CMKLR1-targeted positron emission tomography in the murine model enabled quantification and spatial mapping of inflamed lung regions infiltrated by CMKLR1-expressing macrophages and emerged as a robust predictor of subsequent lung fibrosis. Last, high CMKLR1 expression by bronchoalveolar lavage cells identified an inflammatory endotype of IPF with poor survival. Our investigation supports the potential of CMKLR1 as an imaging biomarker for endotyping and risk stratification of fibrotic lung diseases.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neumonía , Animales , Humanos , Ratones , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Neumonía/metabolismo , Neumonía/diagnóstico por imagen , Neumonía/patología , Macrófagos/metabolismo , Macrófagos/patología , Biomarcadores , Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones/métodos , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Bleomicina , Pulmón/patología , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Masculino , Femenino , Ratones Endogámicos C57BL
10.
Cell Metab ; 36(6): 1335-1350.e8, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38701775

RESUMEN

Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.


Asunto(s)
Glutamina , Serina , Rigidez Vascular , Animales , Glutamina/metabolismo , Serina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibroblastos/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Humanos , Colágeno/metabolismo , Ratas
11.
Arterioscler Thromb Vasc Biol ; 32(8): 1849-55, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22723442

RESUMEN

OBJECTIVE: Vascular endothelial growth factor (VEGF) signaling plays a key role in the pathogenesis of vascular remodeling, including graft arteriosclerosis. Graft arteriosclerosis is the major cause of late organ failure in cardiac transplantation. We used molecular near-infrared fluorescent imaging with an engineered Cy5.5-labeled single-chain VEGF tracer (scVEGF/Cy) to detect VEGF receptors and vascular remodeling in human coronary artery grafts by molecular imaging. METHODS AND RESULTS: VEGF receptor specificity of probe uptake was shown by flow cytometry in endothelial cells. In severe combined immunodeficiency mice, transplantation of human coronary artery segments into the aorta followed by adoptive transfer of allogeneic human peripheral blood mononuclear cells led to significant neointima formation in the grafts over a period of 4 weeks. Near-infrared fluorescent imaging of transplant recipients at 4 weeks demonstrated focal uptake of scVEGF/Cy in remodeling artery grafts. Uptake specificity was demonstrated using an inactive homolog of scVEGF/Cy. scVEGF/Cy uptake predominantly localized in the neointima of remodeling coronary arteries and correlated with VEGF receptor-1 but not VEGF receptor-2 expression. There was a significant correlation between scVEGF/Cy uptake and transplanted artery neointima area. CONCLUSIONS: Molecular imaging of VEGF receptors may provide a noninvasive tool for detection of graft arteriosclerosis in solid organ transplantation.


Asunto(s)
Arteriosclerosis/diagnóstico , Trasplante de Corazón/efectos adversos , Receptores de Factores de Crecimiento Endotelial Vascular/análisis , Animales , Carbocianinas , Células Cultivadas , Vasos Coronarios/patología , Femenino , Citometría de Flujo , Humanos , Ratones , Imagen Molecular
12.
Mol Imaging Biol ; 25(4): 681-691, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36941514

RESUMEN

PURPOSE: To image inflammation and monitor therapeutic response to anti-inflammatory intervention using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) in a preclinical model of acute lung injury (ALI). PROCEDURES: Mice were intratracheally administered lipopolysaccharide (LPS, 2.5 mg/kg) to induce ALI or phosphate-buffered saline as the vehicle control. A subset of mice in the ALI group received two intraperitoneal doses of dexamethasone 1 and 24 h after LPS. [18F]FDG PET/CT was performed 2 days after the induction of ALI. [18F]FDG uptake in the lungs was quantified by PET (%ID/mLmean and standardized uptake value (SUVmean)) and ex vivo γ-counting (%ID/g). The severity of lung inflammation was determined by quantifying the protein level of inflammatory cytokines/chemokines and the activity of neutrophil elastase and glycolytic enzymes. In separate groups of mice, flow cytometry was performed to estimate the contribution of individual immune cell types to the total pulmonary inflammatory cell burden under different treatment conditions. RESULTS: Lung uptake of [18F]FDG was significantly increased during LPS-induced ALI, and a decreased [18F]FDG uptake was observed following dexamethasone treatment to an intermediate level between that of LPS-treated and control mice. Protein expression of inflammatory biomarkers and the activity of neutrophil elastase and glycolytic enzymes were increased in the lungs of LPS-treated mice versus those of control mice, and correlated with [18F]FDG uptake. Furthermore, dexamethasone-induced decreases in cytokine/chemokine protein levels and enzyme activities correlated with [18F]FDG uptake. Neutrophils were the most abundant cells in LPS-induced ALI, and the pattern of total cell burden during ALI with or without dexamethasone therapy mirrored that of [18F]FDG uptake. CONCLUSIONS: [18F]FDG PET noninvasively detects lung inflammation in ALI and its response to anti-inflammatory therapy in a preclinical model. However, high [18F]FDG uptake by bone, brown fat, and myocardium remains a technical limitation for quantification of [18F]FDG in the lungs.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Ratones , Animales , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Elastasa de Leucocito , Glucosa , Lipopolisacáridos , Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones , Neumonía/diagnóstico por imagen , Neumonía/tratamiento farmacológico , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico
13.
EJNMMI Res ; 13(1): 55, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37273103

RESUMEN

BACKGROUND: The lack of noninvasive methods for assessment of dysregulated inflammation as a major driver of fibrosis (i.e., inflammation-fibrosis axis) has been a major challenge to precision management of fibrotic lung diseases. Here, we determined the potential of very late antigen-4 (VLA-4)-targeted positron emission tomography (PET) to detect inflammation in a mouse model of bleomycin-induced fibrotic lung injury. METHOD: Single time-point and longitudinal VLA-4-targeted PET was performed using a high-affinity peptidomimetic radiotracer, 64Cu-LLP2A, at weeks 1, 2, and 4 after bleomycin-induced (2.5 units/kg) lung injury in C57BL/6J mice. The severity of fibrosis was determined by measuring the hydroxyproline content of the lungs and expression of markers of extracellular matrix remodeling. Flow cytometry and histology was performed to determine VLA-4 expression across different leukocyte subsets and their spatial distribution. RESULTS: Lung uptake of 64Cu-LLP2A was significantly elevated throughout different stages of the progression of bleomycin-induced injury. High lung uptake of 64Cu-LLP2A at week-1 post-bleomycin was a predictor of poor survival over the 4-week follow up, supporting the prognostic potential of 64Cu-LLP2A PET during the early stage of the disease. Additionally, the progressive increase in 64Cu-LLP2A uptake from week-1 to week-4 post-bleomycin correlated with the ultimate extent of lung fibrosis and ECM remodeling. Flow cytometry revealed that LLP2A binding was restricted to leukocytes. A combination of increased expression of VLA-4 by alveolar macrophages and accumulation of VLA-4-expressing interstitial and monocyte-derived macrophages as well as dendritic cells was noted in bleomycin-injured, compared to control, lungs. Histology confirmed the increased expression of VLA-4 in bleomycin-injured lungs, particularly in inflamed and fibrotic regions. CONCLUSIONS: VLA-4-targeted PET allows for assessment of the inflammation-fibrosis axis and prediction of disease progression in a murine model. The potential of 64Cu-LLP2A PET for assessment of the inflammation-fibrosis axis in human fibrotic lung diseases needs to be further investigated.

14.
Circ Res ; 107(3): 408-17, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20538685

RESUMEN

RATIONALE: There are conflicting data on the effects of vascular endothelial growth factor (VEGF) in vascular remodeling. Furthermore, there are species-specific differences in leukocyte and vascular cell biology and little is known about the role of VEGF in remodeling of human arteries. OBJECTIVE: We sought to address the role of VEGF blockade on remodeling of human arteries in vivo. METHODS AND RESULTS: We used an anti-VEGF antibody, bevacizumab, to study the effect of VEGF blockade on remodeling of human coronary artery transplants in severe combined immunodeficient mice. Bevacizumab ameliorated peripheral blood mononuclear cell-induced but not interferon-gamma-induced neointimal formation. This inhibitory effect was associated with a reduction in graft T-cell accumulation without affecting T-cell activation. VEGF enhanced T-cell capture by activated endothelium under flow conditions. The VEGF effect could be recapitulated when a combination of recombinant intercellular adhesion molecule 1 and vascular cell adhesion molecule-1 rather than endothelial cells was used to capture T cells. A subpopulation of CD3+ T cells expressed VEGF receptor (VEGFR)-1 by immunostaining and FACS analysis. VEGFR-1 mRNA was also detectable in purified CD4+ T cells and Jurkat and HSB-2 T-cell lines. Stimulation of HSB-2 and T cells with VEGF triggered downstream ERK phosphorylation, demonstrating the functionality of VEGFR-1 in human T cells. CONCLUSIONS: VEGF contributes to vascular remodeling in human arteries through a direct effect on human T cells that enhances their recruitment to the vessel. These findings raise the possibility of novel therapeutic approaches to vascular remodeling based on inhibition of VEGF signaling.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Arterias/fisiología , Vasos Coronarios/trasplante , Linfocitos/fisiología , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Animales , Anticuerpos Monoclonales Humanizados , Arterias/efectos de los fármacos , Bevacizumab , Complejo CD3/inmunología , Humanos , Células Jurkat , Linfocitos/efectos de los fármacos , Ratones , Ratones SCID , Linfocitos T/inmunología , Trasplante Heterólogo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología
15.
Arterioscler Thromb Vasc Biol ; 31(12): 2820-6, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21940943

RESUMEN

OBJECTIVE: Inflammation plays a key role in the development of vascular diseases. Monocytes and macrophages express α(v)ß(3) integrin. We used an α(v) integrin-specific tracer, (99m)Tc-NC100692, to investigate integrin-targeted imaging for detection vessel wall inflammation. METHODS AND RESULTS: The binding of a fluorescent homologue of NC100692 to α(v)ß(3) on human monocytes and macrophages was shown by flow cytometry. Vessel wall inflammation and remodeling was induced in murine carotid arteries through adventitial exposure to CaCl(2). NC100692 micro single photon computed tomography/CT imaging was performed after 2 and 4 weeks and showed significantly higher uptake of the tracer in CaCl(2)-exposed left carotids compared with sham-operated contralateral arteries. Histological analysis at 4 weeks demonstrated significant remodeling of left carotid arteries and considerable macrophage infiltration, which was confirmed by real-time polymerase chain reaction. There was no significant difference in normalized α(v), ß(3), or ß(5) mRNA expression between right and left carotid arteries. Finally, NC100692 uptake strongly correlated with macrophage marker expression in carotid arteries. CONCLUSIONS: NC100692 imaging can detect vessel wall inflammation in vivo. If further validated, α(v)-targeted imaging may provide a noninvasive approach for identifying patients who are at high risk for vascular events and tracking the effect of antiinflammatory treatments.


Asunto(s)
Enfermedades de las Arterias Carótidas/metabolismo , Inflamación/metabolismo , Integrina alfaV/metabolismo , Integrina alfaVbeta3/metabolismo , Péptidos Cíclicos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Cloruro de Calcio/efectos adversos , Enfermedades de las Arterias Carótidas/inducido químicamente , Enfermedades de las Arterias Carótidas/diagnóstico , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Colorantes Fluorescentes , Humanos , Inflamación/inducido químicamente , Inflamación/diagnóstico , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 31(1): 102-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20947820

RESUMEN

OBJECTIVE: To establish and validate early noninvasive imaging of matrix metalloproteinase (MMP) activation for monitoring the progression of vascular remodeling and response to dietary modification. METHODS AND RESULTS: Apolipoprotein E(-/-) mice that were fed a high-fat diet underwent left common carotid artery wire injury. One week after surgery, a group of animals were withdrawn from the high-fat diet. The other group of animals continued that diet throughout the study. Micro single-photon emission computed tomographic (microSPECT)/CT imaging with RP805 (a (99m)Tc-labeled tracer targeting activated MMPs) was repeatedly performed at 2 and 4 weeks after surgery. Histological analysis at 4 weeks showed significant left carotid neointima formation, monocyte/macrophage infiltration, and upregulation of several MMPs, which were ameliorated by withdrawal from the high-fat diet. In vivo microSPECT/CT images visualized significant RP805 uptake, reflecting MMP activation, in the injured carotid arteries. MMP activation was reduced as early as 1 week after withdrawal from the high-fat diet and significantly correlated with neointimal area at 4 weeks after surgery. CONCLUSIONS: MMP activation predicts the progression of vascular remodeling and can track the effect of dietary modification after vascular injury.


Asunto(s)
Traumatismos de las Arterias Carótidas/enzimología , Arteria Carótida Común/enzimología , Grasas de la Dieta/administración & dosificación , Metaloproteinasas de la Matriz/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Traumatismos de las Arterias Carótidas/etiología , Traumatismos de las Arterias Carótidas/patología , Arteria Carótida Común/efectos de los fármacos , Arteria Carótida Común/patología , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Inflamación/enzimología , Inflamación/etiología , Inhibidores de la Metaloproteinasa de la Matriz , Ratones , Ratones Noqueados , Imagen Molecular , Inhibidores de Proteasas/farmacología , Factores de Tiempo , Tomografía Computarizada de Emisión de Fotón Único , Microtomografía por Rayos X
17.
Radiol Case Rep ; 17(6): 2058-2062, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35464793

RESUMEN

Double right coronary artery (RCA) is an extremely uncommon anomaly that is mostly detected incidentally in patients undergoing coronary angiography. It can be a benign and isolated anomaly or associated with other congenital abnormalities, mostly other coronary anomalies. Although atherosclerosis and myocardial ischemia have been frequently reported in patients with double RCA, this likely reflects that the patients were evaluated for chest pain rather than the predisposition to atherosclerosis in double RCA. Paralleling the increased awareness of this entity and the availability of non-invasive and cost-effective imaging of the coronary arteries, the diagnosis of double RCA has increased recently. Here, we present a case of double RCA diagnosed by coronary computed tomographic angiography, and provide a mini-review on the demography, anatomic variants, and clinical significance of double RCA.

18.
Nat Commun ; 13(1): 790, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145079

RESUMEN

High-calorie diet-induced nutrient stress promotes thiol oxidative stress and the reprogramming of blood monocytes, giving rise to dysregulated, obesogenic, proatherogenic monocyte-derived macrophages. We report that in chow-fed, reproductively senescent female mice but not in age-matched male mice, deficiency in the thiol transferase glutaredoxin 1 (Grx1) promotes dysregulated macrophage phenotypes as well as rapid weight gain and atherogenesis. Grx1 deficiency derepresses distinct expression patterns of reactive oxygen species and reactive nitrogen species generators in male versus female macrophages, poising female but not male macrophages for increased peroxynitrate production. Hematopoietic Grx1 deficiency recapitulates this sexual dimorphism in high-calorie diet-fed LDLR-/- mice, whereas macrophage-restricted overexpression of Grx1 eliminates the sex differences unmasked by high-calorie diet-feeding and protects both males and females against atherogenesis. We conclude that loss of monocytic Grx1 activity disrupts the immunometabolic balance in mice and derepresses sexually dimorphic oxidative stress responses in macrophages. This mechanism may contribute to the sex differences reported in cardiovascular disease and obesity in humans.


Asunto(s)
Aterosclerosis/metabolismo , Glutarredoxinas/deficiencia , Glutarredoxinas/metabolismo , Monocitos/metabolismo , Obesidad/metabolismo , Sustancias Protectoras/metabolismo , Animales , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nutrientes , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma
19.
Nat Aging ; 2(2): 140-154, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-37117763

RESUMEN

Accumulation of senescent cells with age is an important driver of aging and age-related diseases. However, the mechanisms and signaling pathways that regulate senescence remain elusive. In this report, we performed post-genome-wide association studies (GWAS) functional studies on the CDKN2A/B locus, a locus known to be associated with multiple age-related diseases and overall human lifespan. We demonstrate that transcription factor CUX1 (Cut-Like Homeobox 1) specifically binds to an atherosclerosis-associated functional single-nucleotide polymorphism (fSNP) (rs1537371) within the locus and regulates the CDKN2A/B-encoded proteins p14ARF, p15INK4b and p16INK4a and the antisense noncoding RNA in the CDK4 (INK4) locus (ANRIL) in endothelial cells (ECs). Endothelial CUX1 expression correlates with telomeric length and is induced by both DNA-damaging agents and oxidative stress. Moreover, induction of CUX1 expression triggers both replicative and stress-induced senescence via activation of p16INK4a expression. Thus, our studies identify CUX1 as a regulator of p16INK4a-dependent endothelial senescence and a potential therapeutic target for atherosclerosis and other age-related diseases.


Asunto(s)
Aterosclerosis , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Humanos , Aterosclerosis/genética , Senescencia Celular/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Células Endoteliales/metabolismo , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Factores de Transcripción/genética
20.
J Nucl Med ; 62(7): 896-902, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33963045

RESUMEN

Over the past decade, there has been a growing recognition of the links between intracellular metabolism and immune cell activation, that is, immunometabolism, and its consequences in atherogenesis. However, most immunometabolic investigations have been conducted in cultured cells through pharmacologic or genetic manipulations of selected immunologic or metabolic pathways, limiting their extrapolation to the complex microenvironment of plaques. In vivo metabolic imaging is ideally situated to address this gap and to determine the clinical implications of immunometabolic alterations for diagnosis and management of patients. Indeed, 18F-FDG has been widely used in clinical studies with promising results for risk stratification of atherosclerosis and monitoring the response to therapeutic interventions, though the biologic basis of its uptake in plaques has been evolving. Herein, we describe recent advances in understanding of immunometabolism of atherosclerosis with an emphasis on macrophages, and we review promising metabolic imaging approaches using 18F-FDG and other PET radiotracers.


Asunto(s)
Placa Aterosclerótica , Fluorodesoxiglucosa F18 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA