Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 148(1-2): 99-111, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265405

RESUMEN

The replication of eukaryotic chromosomes is organized temporally and spatially within the nucleus through epigenetic regulation of replication origin function. The characteristic initiation timing of specific origins is thought to reflect their chromatin environment or sub-nuclear positioning, however the mechanism remains obscure. Here we show that the yeast Forkhead transcription factors, Fkh1 and Fkh2, are global determinants of replication origin timing. Forkhead regulation of origin timing is independent of local levels or changes of transcription. Instead, we show that Fkh1 and Fkh2 are required for the clustering of early origins and their association with the key initiation factor Cdc45 in G1 phase, suggesting that Fkh1 and Fkh2 selectively recruit origins to emergent replication factories. Fkh1 and Fkh2 bind Fkh-activated origins, and interact physically with ORC, providing a plausible mechanism to cluster origins. These findings add a new dimension to our understanding of the epigenetic basis for differential origin regulation and its connection to chromosomal domain organization.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Fase G1 , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética
2.
PLoS Genet ; 19(9): e1010965, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747936

RESUMEN

Drosophila ovarian Follicle Stem Cells (FSCs) present a favorable paradigm for understanding how stem cell division and differentiation are balanced in communities where those activities are independent. FSCs also allow exploration of how this balance is integrated with spatial stem cell heterogeneity. Posterior FSCs become proliferative Follicle Cells (FCs), while anterior FSCs become quiescent Escort Cells (ECs) at about one fourth the frequency. A single stem cell can nevertheless produce both FCs and ECs because it can move between anterior and posterior locations. Studies based on EdU incorporation to approximate division rates suggested that posterior FSCs divide faster than anterior FSCs. However, direct measures of cell cycle times are required to ascertain whether FC output requires a net flow of FSCs from anterior to posterior. Here, by using live imaging and FUCCI cell-cycle reporters, we measured absolute division rates. We found that posterior FSCs cycle more than three times faster than anterior FSCs and produced sufficient new cells to match FC production. H2B-RFP dilution studies supported different cycling rates according to A/P location and facilitated live imaging, showing A/P exchange of FSCs in both directions, consistent with the dynamic equilibrium inferred from division rate measurements. Inversely graded Wnt and JAK-STAT pathway signals regulate FSC differentiation to ECs and FCs. JAK-STAT promotes both differentiation to FCs and FSC cycling, affording some coordination of these activities. When JAK-STAT signaling was manipulated to be spatially uniform, the ratio of posterior to anterior division rates was reduced but remained substantial, showing that graded JAK-STAT signaling only partly explains the graded cycling of FSCs. By using FUCCI markers, we found a prominent G2/M cycling restriction of posterior FSCs together with an A/P graded G1/S restriction, that JAK-STAT signaling promotes both G1/S and G2/M transitions, and that PI3 kinase signaling principally stimulates the G2/M transition.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Transducción de Señal , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Folículo Ovárico/metabolismo , Autorrenovación de las Células , División Celular/genética
3.
PLoS Genet ; 19(11): e1011040, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956120

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1010965.].

4.
J Math Biol ; 88(3): 27, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329536

RESUMEN

We explore properties of the family sizes arising in a linear birth process with immigration (BI). In particular, we study the correlation of the number of families observed during consecutive disjoint intervals of time. Letting S(a, b) be the number of families observed in (a, b), we study the expected sample variance and its asymptotics for p consecutive sequential samples [Formula: see text], for [Formula: see text]. By conditioning on the sizes of the samples, we provide a connection between [Formula: see text] and p sequential samples of sizes [Formula: see text], drawn from a single run of a Chinese Restaurant Process. Properties of the latter were studied in da Silva et al. (Bernoulli 29:1166-1194, 2023. https://doi.org/10.3150/22-BEJ1494 ). We show how the continuous-time framework helps to make asymptotic calculations easier than its discrete-time counterpart. As an application, for a specific choice of [Formula: see text], where the lengths of intervals are logarithmically equal, we revisit Fisher's 1943 multi-sampling problem and give another explanation of what Fisher's model could have meant in the world of sequential samples drawn from a BI process.


Asunto(s)
Emigración e Inmigración , Composición Familiar , Humanos
5.
Gastroenterology ; 158(6): 1682-1697.e1, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032585

RESUMEN

BACKGROUND & AIMS: Esophageal adenocarcinomas (EACs) are heterogeneous and often preceded by Barrett's esophagus (BE). Many genomic changes have been associated with development of BE and EAC, but little is known about epigenetic alterations. We performed epigenetic analyses of BE and EAC tissues and combined these data with transcriptome and genomic data to identify mechanisms that control gene expression and genome integrity. METHODS: In a retrospective cohort study, we collected tissue samples and clinical data from 150 BE and 285 EAC cases from the Oesophageal Cancer Classification and Molecular Stratification consortium in the United Kingdom. We analyzed methylation profiles of all BE and EAC tissues and assigned them to subgroups using non-negative matrix factorization with k-means clustering. Data from whole-genome sequencing and transcriptome studies were then incorporated; we performed integrative methylation and RNA-sequencing analyses to identify genes that were suppressed with increased methylation in promoter regions. Levels of different immune cell types were computed using single-sample gene set enrichment methods. We derived 8 organoids from 8 EAC tissues and tested their sensitivity to different drugs. RESULTS: BE and EAC samples shared genome-wide methylation features, compared with normal tissues (esophageal, gastric, and duodenum; controls) from the same patients and grouped into 4 subtypes. Subtype 1 was characterized by DNA hypermethylation with a high mutation burden and multiple mutations in genes in cell cycle and receptor tyrosine signaling pathways. Subtype 2 was characterized by a gene expression pattern associated with metabolic processes (ATP synthesis and fatty acid oxidation) and lack methylation at specific binding sites for transcription factors; 83% of samples of this subtype were BE and 17% were EAC. The third subtype did not have changes in methylation pattern, compared with control tissue, but had a gene expression pattern that indicated immune cell infiltration; this tumor type was associated with the shortest time of patient survival. The fourth subtype was characterized by DNA hypomethylation associated with structure rearrangements, copy number alterations, with preferential amplification of CCNE1 (cells with this gene amplification have been reported to be sensitive to CDK2 inhibitors). Organoids with reduced levels of MGMT and CHFR expression were sensitive to temozolomide and taxane drugs. CONCLUSIONS: In a comprehensive integrated analysis of methylation, transcriptome, and genome profiles of more than 400 BE and EAC tissues, along with clinical data, we identified 4 subtypes that were associated with patient outcomes and potential responses to therapy.


Asunto(s)
Adenocarcinoma/genética , Esófago de Barrett/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Mucosa Esofágica/patología , Neoplasias Esofágicas/genética , Adenocarcinoma/patología , Anciano , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Esófago de Barrett/tratamiento farmacológico , Esófago de Barrett/patología , Ciclina E/genética , Metilación de ADN/efectos de los fármacos , Progresión de la Enfermedad , Epigénesis Genética/efectos de los fármacos , Neoplasias Esofágicas/patología , Femenino , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Proteínas Oncogénicas/genética , Regiones Promotoras Genéticas/genética , RNA-Seq , Estudios Retrospectivos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Secuenciación Completa del Genoma
6.
Proc Natl Acad Sci U S A ; 115(14): E3182-E3191, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555768

RESUMEN

Cancer-initiating gatekeeper mutations that arise in stem cells would be especially potent if they stabilize and expand an affected stem cell lineage. It is therefore important to understand how different stem cell organization strategies promote or prevent variant stem cell amplification in response to different types of mutation, including those that activate proliferation. Stem cell numbers can be maintained constant while producing differentiated products through individually asymmetrical division outcomes or by population asymmetry strategies in which individual stem cell lineages necessarily compete for niche space. We considered alternative mechanisms underlying population asymmetry and used quantitative modeling to predict starkly different consequences of altering proliferation rate: A variant, faster proliferating mutant stem cell should compete better only when stem cell division and differentiation are independent processes. For most types of stem cells, it has not been possible to ascertain experimentally whether division and differentiation are coupled. However, Drosophila follicle stem cells (FSCs) provided a favorable system with which to investigate population asymmetry mechanisms and also for measuring the impact of altered proliferation on competition. We found from detailed cell lineage studies that division and differentiation of an individual FSC are not coupled. We also found that FSC representation, reflecting maintenance and amplification, was highly responsive to genetic changes that altered only the rate of FSC proliferation. The FSC paradigm therefore provides definitive experimental evidence for the general principle that relative proliferation rate will always be a major determinant of competition among stem cells specifically when stem cell division and differentiation are independent.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Drosophila melanogaster/citología , Folículo Ovárico/citología , Nicho de Células Madre/fisiología , Células Madre/citología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Folículo Ovárico/metabolismo , Células Madre/metabolismo
7.
Genome Res ; 27(6): 902-912, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28465312

RESUMEN

The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer.


Asunto(s)
Adenocarcinoma/genética , Antineoplásicos/uso terapéutico , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Tasa de Mutación , Proteínas de Neoplasias/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Anciano , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Biología Computacional , Variaciones en el Número de Copia de ADN , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Esófago/metabolismo , Esófago/patología , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Proteínas de Neoplasias/metabolismo , Mutación Puntual , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Factores de Tiempo
8.
Mol Cell ; 47(2): 203-14, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22795131

RESUMEN

The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into nonoverlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells, heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of presenescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks, nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.


Asunto(s)
Cromatina/química , Heterocromatina/química , Histonas/metabolismo , Bromodesoxiuridina/farmacología , Senescencia Celular , Cromosomas/ultraestructura , Epigénesis Genética , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genoma , Estudio de Asociación del Genoma Completo , Histonas/química , Humanos , Citometría de Barrido por Láser/métodos , Microscopía Fluorescente/métodos
9.
Theor Popul Biol ; 122: 12-21, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29704515

RESUMEN

We consider inference about the history of a sample of DNA sequences, conditional upon the haplotype counts and the number of segregating sites observed at the present time. After deriving some theoretical results in the coalescent setting, we implement rejection sampling and importance sampling schemes to perform the inference. The importance sampling scheme addresses an extension of the Ewens Sampling Formula for a configuration of haplotypes and the number of segregating sites in the sample. The implementations include both constant and variable population size models. The methods are illustrated by two human Y chromosome datasets.


Asunto(s)
Haplotipos , Modelos Genéticos , Mutación , Algoritmos , Simulación por Computador , Bases de Datos Genéticas , Evolución Molecular , Genealogía y Heráldica , Genética de Población , Humanos , Probabilidad
10.
Theor Popul Biol ; 122: 5-11, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29432792

RESUMEN

This article describes and compares methods for simulating the component counts of random logarithmic combinatorial structures such as permutations and mappings. We exploit the Feller coupling for simulating permutations to provide a very fast method for simulating logarithmic assemblies more generally. For logarithmic multisets and selections, this approach is replaced by an acceptance/rejection method based on a particular conditioning relationship that represents the distribution of the combinatorial structure as that of independent random variables conditioned on a weighted sum. We show how to improve its acceptance rate. We illustrate the method by estimating the probability that a random mapping has no repeated component sizes, and establish the asymptotic distribution of the difference between the number of components and the number of distinct component sizes for a very general class of logarithmic structures.


Asunto(s)
Simulación por Computador , Modelos Estadísticos , Probabilidad , Algoritmos , Modelos Logísticos , Distribución de Poisson
11.
Nature ; 486(7403): 346-52, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22522925

RESUMEN

The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ~40% of genes, with the landscape dominated by cis- and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA­RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the 'CNA-devoid' subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Variaciones en el Número de Copia de ADN/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/diagnóstico , Femenino , Redes Reguladoras de Genes/genética , Genes Relacionados con las Neoplasias/genética , Genómica , Humanos , Estimación de Kaplan-Meier , MAP Quinasa Quinasa 4/genética , Polimorfismo de Nucleótido Simple/genética , Pronóstico , Proteína Fosfatasa 2/genética , Resultado del Tratamiento
12.
PLoS Genet ; 11(3): e1005053, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25790137

RESUMEN

The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.


Asunto(s)
Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Mapas de Interacción de Proteínas/genética , Proteína p53 Supresora de Tumor/genética , Envejecimiento/genética , Apoptosis/genética , Línea Celular , Islas de CpG/genética , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Genes Supresores de Tumor , Humanos , Fenotipo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
13.
Bioinformatics ; 32(14): 2193-5, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27266441

RESUMEN

MOTIVATION: By collecting multiple samples per subject, researchers can characterize intra-subject variation using physiologically relevant measurements such as gene expression profiling. This can yield important insights into fundamental biological questions ranging from cell type identity to tumour development. For each subject, the data measurements can be written as a matrix with the different subsamples (e.g. multiple tissues) indexing the columns and the genes indexing the rows. In this context, neither the genes nor the tissues are expected to be independent and straightforward application of traditional statistical methods that ignore this two-way dependence might lead to erroneous conclusions. Herein, we present a suite of tools embedded within the R/Bioconductor package HDTD for robustly estimating and performing hypothesis tests about the mean relationship and the covariance structure within the rows and columns. We illustrate the utility of HDTD by applying it to analyze data generated by the Genotype-Tissue Expression consortium. AVAILABILITY AND IMPLEMENTATION: The R package HDTD is part of Bioconductor. The source code and a comprehensive user's guide are available at http://bioconductor.org/packages/release/bioc/html/HDTD.html CONTACT: : A.Touloumis@brighton.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Expresión Génica , Programas Informáticos , Humanos , Neoplasias
14.
Nucleic Acids Res ; 43(9): e61, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25722372

RESUMEN

Somatic variant analysis of a tumour sample and its matched normal has been widely used in cancer research to distinguish germline polymorphisms from somatic mutations. However, due to the extensive intratumour heterogeneity of cancer, sequencing data from a single tumour sample may greatly underestimate the overall mutational landscape. In recent studies, multiple spatially or temporally separated tumour samples from the same patient were sequenced to identify the regional distribution of somatic mutations and study intratumour heterogeneity. There are a number of tools to perform somatic variant calling from matched tumour-normal next-generation sequencing (NGS) data; however none of these allow joint analysis of multiple same-patient samples. We discuss the benefits and challenges of multisample somatic variant calling and present multiSNV, a software package for calling single nucleotide variants (SNVs) using NGS data from multiple same-patient samples. Instead of performing multiple pairwise analyses of a single tumour sample and a matched normal, multiSNV jointly considers all available samples under a Bayesian framework to increase sensitivity of calling shared SNVs. By leveraging information from all available samples, multiSNV is able to detect rare mutations with variant allele frequencies down to 3% from whole-exome sequencing experiments.


Asunto(s)
Análisis Mutacional de ADN/métodos , Modelos Estadísticos , Neoplasias/genética , Mutación Puntual , Teorema de Bayes , Carcinoma de Células Renales/genética , Frecuencia de los Genes , Humanos , Neoplasias Renales/genética
15.
Genes Dev ; 23(9): 1077-90, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19417103

RESUMEN

In higher eukaryotes, heritable gene silencing is associated with histone deacetylation and late replication timing. In Saccharomyces cerevisiae, the histone deacetylase Rpd3 regulates gene expression and also modulates replication timing; however, these mechanisms have been suggested to be independent, and no global association has been found between replication timing and gene expression levels. Using 5-Bromo-2'-deoxyuridine (BrdU) incorporation to generate genome-wide replication profiles, we identified >100 late-firing replication origins that are regulated by Rpd3L, which is specifically targeted to promoters to silence transcription. Rpd3S, which recompacts chromatin after transcription, plays a primary role at only a handful of origins, but subtly influences initiation timing globally. The ability of these functionally distinct Rpd3 complexes to affect replication initiation timing supports the idea that histone deacetylation directly influences initiation timing. Accordingly, loss of Rpd3 function results in higher levels of histone H3 and H4 acetylation surrounding Rpd3-regulated origins, and these origins show a significant association with Rpd3 chromatin binding and gene regulation, supporting a general link between histone acetylation, replication timing, and control of gene expression in budding yeast. Our results also reveal a novel and complementary genomic map of Rpd3L- and Rpd3S-regulated chromosomal loci.


Asunto(s)
Replicación del ADN/genética , Genoma Fúngico/genética , Histona Desacetilasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Hidroxiurea/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Regiones Promotoras Genéticas , Origen de Réplica/efectos de los fármacos , Proteínas Represoras/metabolismo , Factores de Tiempo
16.
Genes Dev ; 23(7): 798-803, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19279323

RESUMEN

As a stress response, senescence is a dynamic process involving multiple effector mechanisms whose combination determines the phenotypic quality. Here we identify autophagy as a new effector mechanism of senescence. Autophagy is activated during senescence and its activation is correlated with negative feedback in the PI3K-mammalian target of rapamycin (mTOR) pathway. A subset of autophagy-related genes are up-regulated during senescence: Overexpression of one of those genes, ULK3, induces autophagy and senescence. Furthermore, inhibition of autophagy delays the senescence phenotype, including senescence-associated secretion. Our data suggest that autophagy, and its consequent protein turnover, mediate the acquisition of the senescence phenotype.


Asunto(s)
Envejecimiento/fisiología , Autofagia/fisiología , Mitosis/fisiología , Retroalimentación Fisiológica/fisiología , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/fisiopatología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR
17.
Arterioscler Thromb Vasc Biol ; 35(3): 675-88, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25573856

RESUMEN

OBJECTIVE: We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia. APPROACH AND RESULTS: Antigenic and functional features were analyzed throughout passaging in 15 saphenous vein (SV)-derived APC lines, of which 10 from SV leftovers of coronary artery bypass graft surgery and 5 from varicose SV removal. Moreover, 5 SV-APC lines were transplanted (8×10(5) cells, IM) in mice with limb ischemia. Blood flow and capillary and arteriole density were correlated with functional characteristics and DNA methylation/expressional markers of transplanted cells. We report successful expansion of tested lines, which reached the therapeutic target of 30 to 50 million cells in ≈10 weeks. Typical antigenic profile, viability, and migratory and proangiogenic activities were conserved through passaging, with low levels of replicative senescence. In vivo, SV-APC transplantation improved blood flow recovery and revascularization of ischemic limbs. Whole genome screening showed an association between DNA methylation at the promoter or gene body level and microvascular density and to a lesser extent with blood flow recovery. Expressional studies highlighted the implication of an angiogenic network centered on the vascular endothelial growth factor receptor as a predictor of microvascular outcomes. FLT-1 gene silencing in SV-APCs remarkably reduced their ability to form tubes in vitro and support tube formation by human umbilical vein endothelial cells, thus confirming the importance of this signaling in SV-APC angiogenic function. CONCLUSIONS: DNA methylation landscape illustrates different therapeutic activities of human APCs. Epigenetic screening may help identify determinants of therapeutic vasculogenesis in ischemic disease.


Asunto(s)
Adventicia/trasplante , Metilación de ADN , Epigénesis Genética , Isquemia/cirugía , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Vena Safena/trasplante , Trasplante de Células Madre , Células Madre/fisiología , Adventicia/citología , Animales , Velocidad del Flujo Sanguíneo , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Isquemia/genética , Isquemia/fisiopatología , Ratones , Neovascularización Fisiológica/genética , Recuperación de la Función , Flujo Sanguíneo Regional , Vena Safena/citología , Células Madre/metabolismo , Factores de Tiempo
18.
Mol Cell ; 31(1): 79-90, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18571451

RESUMEN

The Piwi proteins of the Argonaute superfamily are required for normal germline development in Drosophila, zebrafish, and mice and associate with 24-30 nucleotide RNAs termed piRNAs. We identify a class of 21 nucleotide RNAs, previously named 21U-RNAs, as the piRNAs of C. elegans. Piwi and piRNA expression is restricted to the male and female germline and independent of many proteins in other small-RNA pathways, including DCR-1. We show that Piwi is specifically required to silence Tc3, but not other Tc/mariner DNA transposons. Tc3 excision rates in the germline are increased at least 100-fold in piwi mutants as compared to wild-type. We find no evidence for a Ping-Pong model for piRNA amplification in C. elegans. Instead, we demonstrate that Piwi acts upstream of an endogenous siRNA pathway in Tc3 silencing. These data might suggest a link between piRNA and siRNA function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Elementos Transponibles de ADN/genética , Células Germinativas/metabolismo , Proteínas/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas , Caenorhabditis elegans/genética , Proteínas de Drosophila , Femenino , Silenciador del Gen , Genes de Helminto , Células Germinativas/crecimiento & desarrollo , Masculino , Proteínas/genética , ARN de Helminto/metabolismo , Complejo Silenciador Inducido por ARN , Transposasas/metabolismo
19.
PLoS Genet ; 9(1): e1003162, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300480

RESUMEN

Dynamic activity of signaling pathways, such as Notch, is vital to achieve correct development and homeostasis. However, most studies assess output many hours or days after initiation of signaling, once the outcome has been consolidated. Here we analyze genome-wide changes in transcript levels, binding of the Notch pathway transcription factor, CSL [Suppressor of Hairless, Su(H), in Drosophila], and RNA Polymerase II (Pol II) immediately following a short pulse of Notch stimulation. A total of 154 genes showed significant differential expression (DE) over time, and their expression profiles stratified into 14 clusters based on the timing, magnitude, and direction of DE. E(spl) genes were the most rapidly upregulated, with Su(H), Pol II, and transcript levels increasing within 5-10 minutes. Other genes had a more delayed response, the timing of which was largely unaffected by more prolonged Notch activation. Neither Su(H) binding nor poised Pol II could fully explain the differences between profiles. Instead, our data indicate that regulatory interactions, driven by the early-responding E(spl)bHLH genes, are required. Proposed cross-regulatory relationships were validated in vivo and in cell culture, supporting the view that feed-forward repression by E(spl)bHLH/Hes shapes the response of late-responding genes. Based on these data, we propose a model in which Hes genes are responsible for co-ordinating the Notch response of a wide spectrum of other targets, explaining the critical functions these key regulators play in many developmental and disease contexts.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Drosophila , Drosophila , Receptores Notch , Proteínas Represoras , Transducción de Señal/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Secuencia Conservada/genética , Proteínas de Unión al ADN , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética , Activación Transcripcional
20.
Proc Natl Acad Sci U S A ; 110(10): 4009-14, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23412337

RESUMEN

Glioblastoma (GB) is the most common and aggressive primary brain malignancy, with poor prognosis and a lack of effective therapeutic options. Accumulating evidence suggests that intratumor heterogeneity likely is the key to understanding treatment failure. However, the extent of intratumor heterogeneity as a result of tumor evolution is still poorly understood. To address this, we developed a unique surgical multisampling scheme to collect spatially distinct tumor fragments from 11 GB patients. We present an integrated genomic analysis that uncovers extensive intratumor heterogeneity, with most patients displaying different GB subtypes within the same tumor. Moreover, we reconstructed the phylogeny of the fragments for each patient, identifying copy number alterations in EGFR and CDKN2A/B/p14ARF as early events, and aberrations in PDGFRA and PTEN as later events during cancer progression. We also characterized the clonal organization of each tumor fragment at the single-molecule level, detecting multiple coexisting cell lineages. Our results reveal the genome-wide architecture of intratumor variability in GB across multiple spatial scales and patient-specific patterns of cancer evolution, with consequences for treatment design.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Secuencia de Bases , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/genética , Progresión de la Enfermedad , Evolución Molecular , Genes erbB-1 , Genes p16 , Humanos , Filogenia , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA