RESUMEN
This paper reports the first implementation of a new type of mass spectral library for the analysis of Chinese hamster ovary (CHO) cell metabolites that allows users to quickly identify most compounds in any complex metabolite sample. We also describe an annotation methodology developed to filter out artifacts and low-quality spectra from recurrent unidentified spectra of metabolites. CHO cells are commonly used to produce biological therapeutics. Metabolic profiles of CHO cells and media can be used to monitor process variability and look for markers that discriminate between batches of product. We have created a comprehensive library of both identified and unidentified metabolites derived from CHO cells that can be used in conjunction with tandem mass spectrometry to identify metabolites. In addition, we present a workflow that can be used for assigning confidence to a NIST MS/MS Library search match based on prior probability of general utility. The goal of our work is to annotate and identify (when possible), all liquid chromatography-mass spectrometry generated metabolite ions as well as create automatable library building and identification pipelines for use by others in the field.
Asunto(s)
Metaboloma , Metabolómica , Bibliotecas de Moléculas Pequeñas , Animales , Células CHO , Cricetulus , Medios de Cultivo/químicaRESUMEN
A large fraction of ions observed in electrospray liquid chromatography-mass spectrometry (LC-ESI-MS) experiments of biological samples remain unidentified. One of the main reasons for this is that spectral libraries of pure compounds fail to account for the complexity of the metabolite profiling of complex materials. Recently, the NIST Mass Spectrometry Data Center has been developing a novel type of searchable mass spectral library that includes all recurrent unidentified spectra found in the sample profile. These libraries, in conjunction with the NIST tandem mass spectral library, allow analysts to explore most of the chemical space accessible to LC-MS analysis. In this work, we demonstrate how these libraries can provide a reliable fingerprint of the material by applying them to a variety of urine samples, including an extremely altered urine from cancer patients undergoing total body irradiation. The same workflow is applicable to any other biological fluid. The selected class of acylcarnitines is examined in detail, and derived libraries and related software are freely available. They are intended to serve as online resources for continuing community review and improvement.
Asunto(s)
Líquidos Corporales/química , Carnitina/análogos & derivados , Neoplasias/orina , Bibliotecas de Moléculas Pequeñas/análisis , Carnitina/orina , Cromatografía Liquida , Humanos , Espectrometría de Masas , Programas InformáticosRESUMEN
RATIONALE: The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different liquid chromatography/mass spectrometry (LC/MS) platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. METHODS: Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC/MS platforms using reversed-phase chromatography and different chromatographic scales (conventional HPLC, UHPLC and nanoLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). RESULTS: Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (relative standard deviation (RSD) <2%); however, substantial differences were found in the LC/MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. CONLUSIONS: Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable.
Asunto(s)
Metabolómica/métodos , Plasma/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Humanos , Metaboloma , Plasma/químicaRESUMEN
Replication-dependent histones are encoded by multigene families found in several large clusters in the human genome and are thought to be functionally redundant. However, the abundance of specific replication-dependent isoforms of histone H2A is altered in patients with chronic lymphocytic leukemia. Similar changes in the abundance of H2A isoforms are also associated with the proliferation and tumorigenicity of bladder cancer cells. To determine whether these H2A isoforms can perform distinct functions, expression of several H2A isoforms was reduced by siRNA knockdown. Reduced expression of the HIST1H2AC locus leads to increased rates of cell proliferation and tumorigenicity. We also observe that regulation of replication-dependent histone H2A expression can occur on a gene-specific level. Specific replication-dependent histone H2A genes are either up- or downregulated in chronic lymphocytic leukemia tumor tissue samples. In addition, discreet elements are identified in the 5' untranslated region of the HIST1H2AC locus that confer translational repression. Taken together, these results indicate that replication-dependent histone isoforms can possess distinct cellular functions and that regulation of these isoforms may play a role in carcinogenesis.
Asunto(s)
Carcinogénesis , Proliferación Celular , Histonas/fisiología , Regiones no Traducidas 5' , Línea Celular , Línea Celular Tumoral , Cromatina/química , Replicación del ADN , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiología , Neoplasias de la Vejiga Urinaria/metabolismoRESUMEN
There is a crucial need for development of prognostic and predictive biomarkers in human bladder carcinogenesis in order to personalize preventive and therapeutic strategies and improve outcomes. Epigenetic alterations, such as histone modifications, are implicated in the genetic dysregulation that is fundamental to carcinogenesis. Here we focus on profiling the histone modifications during the progression of bladder cancer. Histones were extracted from normal human bladder epithelial cells, an immortalized human bladder epithelial cell line (hTERT), and four human bladder cancer cell lines (RT4, J82, T24, and UMUC3) ranging from superficial low-grade to invasive high-grade cancers. Liquid chromatography-mass spectrometry (LC-MS) profiling revealed a statistically significant increase in phosphorylation of H1 linker histones from normal human bladder epithelial cells to low-grade superficial to high-grade invasive bladder cancer cells. This finding was further validated by immunohistochemical staining of the normal epithelium and transitional cell cancer from human bladders. Cell cycle analysis of histone H1 phosphorylation by Western blotting showed an increase of phosphorylation from G0/G1 phase to M phase, again supporting this as a proliferative marker. Changes in histone H1 phosphorylation status may further clarify epigenetic changes during bladder carcinogenesis and provide diagnostic and prognostic biomarkers or targets for future therapeutic interventions.
Asunto(s)
Carcinogénesis/metabolismo , Epigénesis Genética , Histonas/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Cromatografía Liquida , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Humanos , Espectrometría de Masas , Fosforilación , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
Recent progress in metabolomics and the development of increasingly sensitive analytical techniques have renewed interest in global profiling, i.e., semiquantitative monitoring of all chemical constituents of biological fluids. In this work, we have performed global profiling of NIST SRM 1950, "Metabolites in Human Plasma", using GC-MS, LC-MS, and NMR. Metabolome coverage, difficulties, and reproducibility of the experiments on each platform are discussed. A total of 353 metabolites have been identified in this material. GC-MS provides 65 unique identifications, and most of the identifications from NMR overlap with the LC-MS identifications, except for some small sugars that are not directly found by LC-MS. Also, repeatability and intermediate precision analyses show that the SRM 1950 profiling is reproducible enough to consider this material as a good choice to distinguish between analytical and biological variability. Clinical laboratory data shows that most results are within the reference ranges for each assay. In-house computational tools have been developed or modified for MS data processing and interactive web display. All data and programs are freely available online at http://peptide.nist.gov/ and http://srmd.nist.gov/ .
Asunto(s)
Análisis Químico de la Sangre/normas , Cromatografía Liquida/normas , Cromatografía de Gases y Espectrometría de Masas/normas , Internet , Espectroscopía de Resonancia Magnética/normas , Metabolómica/normas , United States Government Agencies , Métodos Analíticos de la Preparación de la Muestra , Humanos , Estándares de Referencia , Programas Informáticos , Estados UnidosRESUMEN
Cruciferous vegetable intake is associated with reduced risk of bladder cancer, yet mechanisms remain unclear. Cruciferous vegetable isothiocyanates (ITCs), namely sulforaphane (SFN) and erucin (ECN), significantly inhibit histone deacetylase (HDAC) activity in human bladder cancer cells representing superficial to invasive biology (59-83% inhibition with 20µM, 48h treatment), and in bladder cancer xenografts (59±3% ECN inhibition). Individual HDACs inhibited by SFN and ECN include HDACs 1, 2, 4 and 6. Interestingly, global acetylation status of histones H3 or H4 remain unaltered. The interplay between HDAC inhibition and modest modulation of AcH3 and AcH4 status is partially explained by decreased histone acetyl transferase activity (48.8±5.3%). In contrast, a significant decrease in phosphorylation status of all isoforms of histone H1 was observed, concomitant with increased phosphatase PP1ß and PP2A activity. Together, these findings suggest that ITCs modulate histone status via HDAC inhibition and phosphatase enhancement. This allows for reduced levels of histone H1 phosphorylation, a marker correlated with human bladder cancer progression. Therefore, ITC-mediated inhibition of histone H1 phosphorylation presents a novel direction of research in elucidating epidemiological relationships and supports future food-based prevention strategies. SIGNIFICANCE: Collectively, our findings suggest that the cruciferous vegetable isothiocyanates: sulforaphane (SFN) and erucin (ECN), impact histones status in bladder cancer cells by modulating specific HDACs and HATs, and enhancing phosphatase activity, resulting in reduction of histone H1 phosphorylation. These findings are significant due to the fact that our previous work positively correlated histone H1 phosphorylation with bladder cancer carcinogenesis and progression. Therefore, we propose that SFN and ECN may inhibit bladder carcinogenesis via epigenetic modulation of gene expression associated with histone H1 phosphorylation. These efforts may elucidate biomarkers useful in epidemiologic studies related to cruciferous vegetable intake and cancer risk or provide intermediate biomarkers for food-based clinical intervention studies in high-risk cohorts.