Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 154(3): 651-63, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911327

RESUMEN

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Asunto(s)
Células Endoteliales/metabolismo , Glucólisis , Neovascularización Fisiológica , Fosfofructoquinasa-2/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Células Endoteliales/citología , Femenino , Eliminación de Gen , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/genética , Seudópodos/metabolismo , Pez Cebra
2.
Biochem Biophys Res Commun ; 503(1): 26-31, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29730294

RESUMEN

During embryonic development, lymphatic endothelial cells (LECs) differentiate from venous endothelial cells (VECs), a process that is tightly regulated by several genetic signals. While the aquatic zebrafish model is regularly used for studying lymphangiogenesis and offers the unique advantage of time-lapse video-imaging of lymphatic development, some aspects of lymphatic development in this model differ from those in the mouse. It therefore remained to be determined whether fatty acid ß-oxidation (FAO), which we showed to regulate lymphatic formation in the mouse, also co-determines lymphatic development in this aquatic model. Here, we took advantage of the power of the zebrafish embryo model to visualize the earliest steps of lymphatic development through time-lapse video-imaging. By targeting zebrafish isoforms of carnitine palmitoyltransferase 1a (cpt1a), a rate controlling enzyme of FAO, with multiple morpholinos, we demonstrate that reducing CPT1A levels and FAO flux during zebrafish development impairs lymphangiogenic secondary sprouting, the initiation of lymphatic development in the zebrafish trunk, and the formation of the first lymphatic structures. These findings not only show evolutionary conservation of the importance of FAO for lymphatic development, but also suggest a role for FAO in co-regulating the process of VEC-to-LEC differentiation in zebrafish in vivo.


Asunto(s)
Ácidos Grasos/metabolismo , Vasos Linfáticos/embriología , Vasos Linfáticos/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Diferenciación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Marcación de Gen , Linfangiogénesis/genética , Linfangiogénesis/fisiología , Modelos Animales , Oxidación-Reducción , Imagen de Lapso de Tiempo , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Chem Biol ; 21(10): 1310-1317, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25200605

RESUMEN

Angiogenesis contributes to the development of numerous disorders. Even though fibroblast growth factors (FGFs) were discovered as mediators of angiogenesis more than 30 years ago, their role in developmental angiogenesis still remains elusive. We use a recently described chemical probe, SSR128129E (SSR), that selectively inhibits the action of multiple FGF receptors (FGFRs), in combination with the zebrafish model to examine the role of FGF signaling in vascular development. We observe that while FGFR signaling is less important for vessel guidance, it affects vascular outgrowth and is especially required for the maintenance of blood vessel integrity by ensuring proper cell-cell junctions between endothelial cells. In conclusion, our work illustrates the power of a small molecule probe to reveal insights into blood vessel formation and stabilization and thus of broad interest to the vascular biology community.


Asunto(s)
Vasos Sanguíneos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Pez Cebra/metabolismo , Aletas de Animales/fisiología , Animales , Vasos Sanguíneos/efectos de los fármacos , Cadherinas/metabolismo , Embrión no Mamífero/metabolismo , Indolizinas/química , Indolizinas/metabolismo , Indolizinas/farmacología , Uniones Intercelulares/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Regeneración , Transducción de Señal/efectos de los fármacos , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacología
4.
Cell Metab ; 19(1): 37-48, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24332967

RESUMEN

Strategies targeting pathological angiogenesis have focused primarily on blocking vascular endothelial growth factor (VEGF), but resistance and insufficient efficacy limit their success, mandating alternative antiangiogenic strategies. We recently provided genetic evidence that the glycolytic activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) promotes vessel formation but did not explore the antiangiogenic therapeutic potential of PFKFB3 blockade. Here, we show that blockade of PFKFB3 by the small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) reduced vessel sprouting in endothelial cell (EC) spheroids, zebrafish embryos, and the postnatal mouse retina by inhibiting EC proliferation and migration. 3PO also suppressed vascular hyperbranching induced by inhibition of Notch or VEGF receptor 1 (VEGFR1) and amplified the antiangiogenic effect of VEGF blockade. Although 3PO reduced glycolysis only partially and transiently in vivo, this sufficed to decrease pathological neovascularization in ocular and inflammatory models. These insights may offer therapeutic antiangiogenic opportunities.


Asunto(s)
Glucólisis , Neovascularización Patológica/enzimología , Fosfofructoquinasa-2/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Fosfofructoquinasa-2/metabolismo , Piridinas/farmacología , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/patología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA