Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(14): 2469-2477.e13, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803245

RESUMEN

Autoantibodies targeting neuronal membrane proteins can cause encephalitis, seizures, and severe behavioral abnormalities. While antibodies for several neuronal targets have been identified, structural details on how they regulate function are unknown. Here we determined cryo-electron microscopy structures of antibodies derived from an encephalitis patient bound to the γ-aminobutyric acid type A (GABAA) receptor. These antibodies induced severe encephalitis by directly inhibiting GABAA function, resulting in nervous-system hyperexcitability. The structures reveal mechanisms of GABAA inhibition and pathology. One antibody directly competes with a neurotransmitter and locks the receptor in a resting-like state. The second antibody targets the subunit interface involved in binding benzodiazepines and antagonizes diazepam potentiation. We identify key residues in these antibodies involved in specificity and affinity and confirm structure-based hypotheses for functional effects using electrophysiology. Together these studies define mechanisms of direct functional antagonism of neurotransmission underlying autoimmune encephalitis in a human patient.


Asunto(s)
Encefalitis , Receptores de GABA-A , Autoanticuerpos , Microscopía por Crioelectrón , Enfermedad de Hashimoto , Humanos , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico
2.
Nature ; 632(8027): 1174-1180, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085615

RESUMEN

During development, motor neurons originating in the brainstem and spinal cord form elaborate synapses with skeletal muscle fibres1. These neurons release acetylcholine (ACh), which binds to nicotinic ACh receptors (AChRs) on the muscle, initiating contraction. Two types of AChR are present in developing muscle cells, and their differential expression serves as a hallmark of neuromuscular synapse maturation2-4. The structural principles underlying the switch from fetal to adult muscle receptors are unknown. Here, we present high-resolution structures of both fetal and adult muscle nicotinic AChRs, isolated from bovine skeletal muscle in developmental transition. These structures, obtained in the absence and presence of ACh, provide a structural context for understanding how fetal versus adult receptor isoforms are tuned for synapse development versus the all-or-none signalling required for high-fidelity skeletal muscle contraction. We find that ACh affinity differences are driven by binding site access, channel conductance is tuned by widespread surface electrostatics and open duration changes result from intrasubunit interactions and structural flexibility. The structures further reveal pathogenic mechanisms underlying congenital myasthenic syndromes.


Asunto(s)
Envejecimiento , Feto , Desarrollo de Músculos , Músculo Esquelético , Receptores Nicotínicos , Animales , Bovinos , Humanos , Acetilcolina/metabolismo , Envejecimiento/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Feto/metabolismo , Modelos Moleculares , Contracción Muscular , Músculo Esquelético/citología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Síndromes Miasténicos Congénitos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestructura , Electricidad Estática
3.
Nature ; 585(7824): 303-308, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879488

RESUMEN

Most general anaesthetics and classical benzodiazepine drugs act through positive modulation of γ-aminobutyric acid type A (GABAA) receptors to dampen neuronal activity in the brain1-5. However, direct structural information on the mechanisms of general anaesthetics at their physiological receptor sites is lacking. Here we present cryo-electron microscopy structures of GABAA receptors bound to intravenous anaesthetics, benzodiazepines and inhibitory modulators. These structures were solved in a lipidic environment and are complemented by electrophysiology and molecular dynamics simulations. Structures of GABAA receptors in complex with the anaesthetics phenobarbital, etomidate and propofol reveal both distinct and common transmembrane binding sites, which are shared in part by the benzodiazepine drug diazepam. Structures in which GABAA receptors are bound by benzodiazepine-site ligands identify an additional membrane binding site for diazepam and suggest an allosteric mechanism for anaesthetic reversal by flumazenil. This study provides a foundation for understanding how pharmacologically diverse and clinically essential drugs act through overlapping and distinct mechanisms to potentiate inhibitory signalling in the brain.


Asunto(s)
Anestésicos Generales/química , Anestésicos Generales/farmacología , Barbitúricos/química , Barbitúricos/farmacología , Benzodiazepinas/química , Benzodiazepinas/farmacología , Microscopía por Crioelectrón , Receptores de GABA-A/química , Regulación Alostérica/efectos de los fármacos , Anestésicos Generales/metabolismo , Barbitúricos/metabolismo , Benzodiazepinas/metabolismo , Bicuculina/química , Bicuculina/metabolismo , Bicuculina/farmacología , Sitios de Unión , Unión Competitiva/efectos de los fármacos , Diazepam/química , Diazepam/metabolismo , Diazepam/farmacología , Electrofisiología , Etomidato/química , Etomidato/metabolismo , Etomidato/farmacología , Flumazenil/farmacología , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/metabolismo , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Fenobarbital/química , Fenobarbital/metabolismo , Fenobarbital/farmacología , Picrotoxina/química , Picrotoxina/metabolismo , Picrotoxina/farmacología , Propofol/química , Propofol/metabolismo , Propofol/farmacología , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestructura , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
4.
Nature ; 559(7712): 67-72, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950725

RESUMEN

Fast inhibitory neurotransmission in the brain is principally mediated by the neurotransmitter GABA (γ-aminobutyric acid) and its synaptic target, the type A GABA receptor (GABAA receptor). Dysfunction of this receptor results in neurological disorders and mental illnesses including epilepsy, anxiety and insomnia. The GABAA receptor is also a prolific target for therapeutic, illicit and recreational drugs, including benzodiazepines, barbiturates, anaesthetics and ethanol. Here we present high-resolution cryo-electron microscopy structures of the human α1ß2γ2 GABAA receptor, the predominant isoform in the adult brain, in complex with GABA and the benzodiazepine site antagonist flumazenil, the first-line clinical treatment for benzodiazepine overdose. The receptor architecture reveals unique heteromeric interactions for this important class of inhibitory neurotransmitter receptor. This work provides a template for understanding receptor modulation by GABA and benzodiazepines, and will assist rational approaches to therapeutic targeting of this receptor for neurological disorders and mental illness.


Asunto(s)
Microscopía por Crioelectrón , Receptores de GABA-A/química , Receptores de GABA-A/ultraestructura , Benzodiazepinas/antagonistas & inhibidores , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacología , Bicuculina/farmacología , Unión Competitiva/efectos de los fármacos , Química Encefálica , Membrana Celular/química , Membrana Celular/metabolismo , Flumazenil/química , Flumazenil/metabolismo , Flumazenil/farmacología , Moduladores del GABA/química , Moduladores del GABA/metabolismo , Moduladores del GABA/farmacología , Glicosilación , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Ligandos , Modelos Moleculares , Receptores de GABA-A/inmunología , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
5.
Nature ; 557(7704): 261-265, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720657

RESUMEN

Fast chemical communication in the nervous system is mediated by neurotransmitter-gated ion channels. The prototypical member of this class of cell surface receptors is the cation-selective nicotinic acetylcholine receptor. As with most ligand-gated ion channels, nicotinic receptors assemble as oligomers of subunits, usually as hetero-oligomers and often with variable stoichiometries 1 . This intrinsic heterogeneity in protein composition provides fine tunability in channel properties, which is essential to brain function, but frustrates structural and biophysical characterization. The α4ß2 subtype of the nicotinic acetylcholine receptor is the most abundant isoform in the human brain and is the principal target in nicotine addiction. This pentameric ligand-gated ion channel assembles in two stoichiometries of α- and ß-subunits (2α:3ß and 3α:2ß). Both assemblies are functional and have distinct biophysical properties, and an imbalance in the ratio of assemblies is linked to both nicotine addiction2,3 and congenital epilepsy4,5. Here we leverage cryo-electron microscopy to obtain structures of both receptor assemblies from a single sample. Antibody fragments specific to ß2 were used to 'break' symmetry during particle alignment and to obtain high-resolution reconstructions of receptors of both stoichiometries in complex with nicotine. The results reveal principles of subunit assembly and the structural basis of the distinctive biophysical and pharmacological properties of the two different stoichiometries of this receptor.


Asunto(s)
Microscopía por Crioelectrón , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestructura , Animales , Sitios de Unión , Conductividad Eléctrica , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/farmacología , Activación del Canal Iónico , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Nicotina/química , Nicotina/metabolismo , Nicotina/farmacología , Isoformas de Proteínas/química , Isoformas de Proteínas/inmunología , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Estructura Cuaternaria de Proteína/efectos de los fármacos , Subunidades de Proteína/agonistas , Subunidades de Proteína/inmunología , Receptores Nicotínicos/química , Receptores Nicotínicos/inmunología
6.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34927571

RESUMEN

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/metabolismo , Caenorhabditis elegans , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo , Animales Modificados Genéticamente , Enfermedades Neurodegenerativas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidopamina , Degeneración Nerviosa , Autofagia , Lípidos , Neuronas Dopaminérgicas , Modelos Animales de Enfermedad
7.
Proc Natl Acad Sci U S A ; 116(19): 9410-9416, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010928

RESUMEN

An adequate response of a living cell to the ever-changing environment requires integration of numerous sensory inputs. In many cases, it can be achieved even at the level of a single receptor molecule. Polymodal transient receptor potential (TRP) channels have been shown to integrate mechanical, chemical, electric, and thermal stimuli. Inappropriate gating can lead to pathologies. Among the >60 known TRP vanilloid subfamily (V) 4 mutations that interfere with bone development are Y602C or R616Q at the S4-S5 linker. A cation-π bond between the conservative residues Y602 and R616 of neighboring subunits appears likely in many homologous channel structures in a closed state. Our experiments with TRPV4 mutants indicate that the resting-closed state remains stable while the bond is substituted by a salt bridge or disulfide bond, whereas disruption of the contact by mutations like Y602C or R616Q produces gain-of-function phenotypes when TRPV4 is heterologously expressed in the Xenopus oocyte or yeast. Our data indicate that the Y602-R616 cation-π interactions link the four S4-S5 linker helices together, forming a girdle backing the closed gate. Analogous cation-π bonds and the girdle are seen in many closed TRP channel structures. This girdle is not observed in the cryo-EM structure of amphibian TRPV4 (Protein Data Bank ID code 6BBJ), which appears to be in a different impermeable state-we hypothesize this is the inactivated state.


Asunto(s)
Mutación Missense , Canales Catiónicos TRPV , Sustitución de Aminoácidos , Animales , Humanos , Conformación Proteica en Hélice alfa , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Xenopus laevis
8.
Phytother Res ; 35(2): 954-973, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32893437

RESUMEN

Blood-brain barrier (BBB) dysfunction has been implicated in Alzheimer's disease (AD) and is closely linked to the release of proinflammatory cytokines in brain capillary endothelial cells. We have previously reported that lychee seed polyphenols (LSP) exerted anti-neuroinflammatory effect. In this study, we aimed to explore the protective effect of LSP on BBB integrity. The monolayer permeability of bEnd.3 cells, and the mRNA level and protein expression of tight junction proteins (TJs), including Claudin 5, Occludin, and ZO-1, were examined. In addition, the inhibition of Aß(25-35)-induced NLRP3 inflammasome activation, and the autophagy induced by LSP were investigated by detecting the expression of NLRP3, caspase-1, ASC, LC3, AMPK, mTOR, and ULK1. Furthermore, the cognitive function and the expression of TJs, NLRP3, caspase-1, IL-1ß, and p62 were determined in APP/PS1 mice. The results showed that LSP significantly decreased the monolayer permeability and inhibited the NLRP3 inflammasome in Aß(25-35)-induced bEnd3 cells. In addition, LSP induced autophagy via the AMPK/mTOR/ULK1 pathway in bEnd.3 cells, and improved the spatial learning and memory function, increased the TJs expression, and inhibited the expression of NLRP3, caspase-1, IL-1ß, and p62 in APP/PS1 mice. Therefore, LSP protects BBB integrity in AD through inhibiting Aß(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Autofagia/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Litchi/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Polifenoles/uso terapéutico , Semillas/química , Animales , Masculino , Ratones , Ratones Transgénicos , Polifenoles/farmacología , Transfección
9.
Pharmacol Res ; 147: 104396, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31404628

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Our previous studies have proven that Trillium tschonoskii Maxim. (TTM), a traditional Chinese medicine, possesses potent anti-tumor effect. However, the detailed components and molecular mechanism of TTM in anti-NSCLC are still unknown. In the present experiment, polyphyllin VI (PPVI) was successfully isolated from TTM with guidance of the anti-proliferative effect in A549 cells, and the cell death of PPVI treated A549 and H1299 cells was closely linked with the increased intracellular ROS levels. In addition, PPVI induced apoptosis by promoting the protein expression of Bax/Bcl2, caspase-3 and caspase-9, and activated autophagy by improving LC3 II conversion and GFP-LC3 puncta formation in A549 and H1299 cells. The mechanism study found that the activity of mTOR which regulates cell growth, proliferation and autophagy was significantly suppressed by PPVI. Accordingly, the PI3K/AKT and MEK/ERK pathways positively regulating mTOR were inhibited, and AMPK negatively regulating mTOR was activated. In addition, the downstream of mTOR, ULK1 at Ser 757 which downregulates autophagy was inhibited by PPVI. The apoptotic cell death induced by PPVI was confirmed, and it was significantly suppressed by the overexpression of AKT, ERK and mTOR, and the induced autophagic cell death which was depended on the Atg7 was decreased by the inhibitors, such as LY294002 (LY), Bafilomycin A1 (Baf), Compound C (CC) and SBI-0206965 (SBI). Furthermore, the mTOR signaling pathway was regulated by the increased ROS as the initial signal in A549 and H1299 cells. Finally, the anti-tumor growth activity of PPVI in vivo was validated in A549 bearing athymic nude mice. Taken together, our data have firstly demonstrated that PPVI is the main component in TTM that exerts the anti-proliferative effect by inducing apoptotic and autophagic cell death in NSCLC via the ROS-triggered mTOR signaling pathway, and PPVI may be a promising candidate for the treatment of NSCLC in future.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Saponinas/farmacología , Saponinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Muerte Celular Autofágica/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Trillium
10.
Proc Natl Acad Sci U S A ; 113(42): 11847-11852, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698146

RESUMEN

We have some generalized physical understanding of how ion channels interact with surrounding lipids but few detailed descriptions on how interactions of particular amino acids with contacting lipids may regulate gating. Here we discovered a structure-specific interaction between an amino acid and inner-leaflet lipid that governs the gating transformations of TRPV4 (transient receptor potential vanilloid type 4). Many cation channels use a S4-S5 linker to transmit stimuli to the gate. At the start of TRPV4's linker helix is leucine 596. A hydrogen bond between the indole of W733 of the TRP helix and the backbone oxygen of L596 secures the helix/linker contact, which acts as a latch maintaining channel closure. The modeled side chain of L596 interacts with the inner lipid leaflet near the polar-nonpolar interface in our model-an interaction that we explored by mutagenesis. We examined the outward currents of TRPV4-expressing Xenopus oocyte upon depolarizations as well as phenotypes of expressing yeast cells. Making this residue less hydrophobic (L596A/G/W/Q/K) reduces open probability [Po; loss-of-function (LOF)], likely due to altered interactions at the polar-nonpolar interface. L596I raises Po [gain-of-function (GOF)], apparently by placing its methyl group further inward and receiving stronger water repulsion. Molecular dynamics simulations showed that the distance between the levels of α-carbons of H-bonded residues L596 and W733 is shortened in the LOFs and lengthened in the GOFs, strengthening or weakening the linker/TRP helix latch, respectively. These results highlight that L596 lipid attraction counteracts the latch bond in a tug-of-war to tune the Po of TRPV4.


Asunto(s)
Aminoácidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Dominios y Motivos de Interacción de Proteínas , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Secuencia de Aminoácidos , Animales , Mutación con Ganancia de Función , Enlace de Hidrógeno , Activación del Canal Iónico/efectos de los fármacos , Lípidos/química , Mutación con Pérdida de Función , Membranas/química , Membranas/metabolismo , Modelos Moleculares , Fenotipo , Conformación Proteica , Relación Estructura-Actividad , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Xenopus , Levaduras/genética , Levaduras/metabolismo
11.
J Biol Chem ; 292(50): 20570-20582, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29042437

RESUMEN

Saccharomyces cerevisiae Mid1 is composed of 548 amino acids and a regulatory subunit of Cch1, a member of the eukaryotic pore-forming, four-domain cation channel family. The amino acid sequence and voltage insensitivity of Cch1 are more similar to those of Na+ leak channel non-selective (NALCN) than to the α1 subunit of voltage-gated Ca2+ channels (VGCCs). Despite a lack in overall primary sequence similarity, Mid1 resembles in some aspects VGCC α2/δ regulatory subunits and NALCN-associated proteins. Unlike animal α2/δ subunits, Mid1 and NALCN-associated proteins are essential for the function of the pore-forming subunit. We herein investigated the processing and membrane translocation of Mid1. Mid1 was found to have a 20-amino-acid-long N-terminal signal peptide and appeared to be entirely localized extracellularly. A signal peptide-deleted Mid1 protein, Mid1ΔN23, was N-glycosylated and retained Ca2+ influx activity through Cch1. Moreover, an N-terminal truncation analysis revealed that even truncated Mid1 lacking 209 N-terminal amino acid residues was N-glycosylated and maintained Ca2+ influx activity. A 219-amino-acid-truncated Mid1 protein lost this activity but was still N-glycosylated. In the sec71Δ and sec72Δ single mutants defective in the post-translational protein transport into the endoplasmic reticulum (ER), Mid1ΔN23 could not mediate Ca2+ influx and did not undergo N-glycosylation, whereas wild-type Mid1 exhibited normal Ca2+ influx activity and N-glycosylation in these mutants. Therefore, the signal peptide-lacking Mid1ΔN23 protein may be translocated to the ER exclusively through the post-translational protein translocation, which typically requires an N-terminal signal peptide. Mid1 may provide a tool for studying mechanisms of protein translocation into the ER.


Asunto(s)
Canales de Calcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Canales de Calcio/química , Canales de Calcio/genética , Secuencia Conservada , Eliminación de Gen , Glicosilación , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Filogenia , Mutación Puntual , Dominios Proteicos , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
12.
Proc Natl Acad Sci U S A ; 112(30): 9400-5, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170305

RESUMEN

Ca(2+)-calmodulin (CaM) regulates varieties of ion channels, including Transient Receptor Potential vanilloid subtype 4 (TrpV4). It has previously been proposed that internal Ca(2+) increases TrpV4 activity through Ca(2+)-CaM binding to a C-terminal Ca(2+)-CaM binding domain (CBD). We confirmed this model by directly presenting Ca(2+)-CaM protein to membrane patches excised from TrpV4-expressing oocytes. Over 50 TRPV4 mutations are now known to cause heritable skeletal dysplasia (SD) and other diseases in human. We have previously examined 14 SD alleles and found them to all have gain-of-function effects, with the gain of constitutive open probability paralleling disease severity. Among the 14 SD alleles examined, E797K and P799L are located immediate upstream of the CBD. They not only have increase basal activity, but, unlike the wild-type or other SD-mutant channels examined, they were greatly reduced in their response to Ca(2+)-CaM. Deleting a 10-residue upstream peptide (Δ795-804) that covers the two SD mutant sites resulted in strong constitutive activity and the complete lack of Ca(2+)-CaM response. We propose that the region immediately upstream of CBD is an autoinhibitory domain that maintains the closed state through electrostatic interactions, and adjacent detachable Ca(2+)-CaM binding to CBD sterically interferes with this autoinhibition. This work further supports the notion that TrpV4 mutations cause SD by constitutive leakage. However, the closed conformation is likely destabilized by various mutations by different mechanisms, including the permanent removal of an autoinhibition documented here.


Asunto(s)
Enfermedades Óseas/fisiopatología , Calmodulina/química , Canalopatías/fisiopatología , Canales Catiónicos TRPV/fisiología , Alelos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Enfermedades Óseas/genética , Calcio/química , Quelantes/química , Perfilación de la Expresión Génica , Humanos , Activación del Canal Iónico , Datos de Secuencia Molecular , Mutación , Oocitos/citología , Unión Proteica/genética , Estructura Terciaria de Proteína , ARN Complementario/metabolismo , Homología de Secuencia de Aminoácido , Canales Catiónicos TRPV/genética , Xenopus laevis
13.
Proc Natl Acad Sci U S A ; 112(11): 3386-91, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25737550

RESUMEN

Unlike other cation channels, each subunit of most transient receptor potential (TRP) channels has an additional TRP-domain helix with an invariant tryptophan immediately trailing the gate-bearing S6. Recent cryo-electron microscopy of TRP vanilloid subfamily, member 1 structures revealed that this domain is a five-turn amphipathic helix, and the invariant tryptophan forms a bond with the beginning of the four-turn S4-S5 linker helix. By homology modeling, we identified the corresponding L596-W733 bond in TRP vanilloid subfamily, member 4 (TRPV4). The L596P mutation blocks bone development in Kozlowski-type spondylometaphyseal dysplasia in human. Our previous screen also isolated W733R as a strong gain-of-function (GOF) mutation that suppresses growth when the W733R channel is expressed in yeast. We show that, when expressed in Xenopus oocytes, TRPV4 with the L596P or W733R mutation displays normal depolarization-induced activation and outward rectification. However, these mutant channels have higher basal open probabilities and limited responses to the agonist GSK1016790A, explaining their biological GOF phenotypes. In addition, W733R current fails to inactivate during depolarization. Systematic replacement of W733 with amino acids of different properties produced similar electrophysiological and yeast phenotypes. The results can be interpreted consistently in the context of the homology model of TRPV4 molecule we have developed and refined using simulations in explicit medium. We propose that this bond maintains the orientation of the S4-S5 linker to keep the S6 gate closed. Further, the two partner helices, both amphipathic and located at the polar-nonpolar interface of the inner lipid monolayer, may receive and integrate various physiological stimuli.


Asunto(s)
Activación del Canal Iónico , Leucina/química , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Triptófano/química , Sustitución de Aminoácidos , Animales , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Oocitos , Fenotipo , Estabilidad Proteica , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo , Relación Estructura-Actividad , Canales Catiónicos TRPV/genética , Xenopus
14.
Int J Mol Sci ; 19(7)2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30036972

RESUMEN

Amyloid-ß (Aß) is commonly recognized as the most important factor that results in neuronal cell death and accelerates the progression of Alzheimer's disease (AD). Increasing evidence suggests that microglia activated by Aß release an amount of neurotoxic inflammatory cytokines that contribute to neuron death and aggravate AD pathology. In our previous studies, we found that lychee seed fraction (LSF), an active fraction derived from the lychee seed, could significantly improve the cognitive function of AD rats and inhibit Aß-induced neuroinflammation in vitro, and decrease neuronal injuries in vivo and in vitro. In the current study, we aimed to isolate and identify the specific components in LSF that were responsible for the anti-neuroinflammation effect using preparative high performance liquid chromatography (pre-HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) methods. To this end, we confirmed two polyphenols including catechin and procyanidin A2 that could improve the morphological status of BV-2 cells and suppress the release, mRNA levels, and protein expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) through downregulating the nuclear factor-κB (NF-κB) signaling pathway using ELISA, RT-PCR, and Western blotting methods. Furthermore, catechin and procyanidin A2 could inhibit Aß-induced apoptosis in BV-2 cells by upregulating Bcl-2 and downregulating Bax protein expression. Therefore, the current study illustrated the active substances in lychee seed, and first reported that catechin and procyanidin A2 could suppress neuroinflammation in Aß-induced BV-2 cells, which provides detailed insights into the molecular mechanism of catechin and procyanidin A2 in the neuroprotective effect, and their further validations of anti-neuroinflammation in vivo is also essential in future research.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Inflamación/tratamiento farmacológico , Litchi/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Polifenoles/química , Polifenoles/uso terapéutico , Semillas/química , Animales , Apoptosis/efectos de los fármacos , Catequina/metabolismo , Línea Celular , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , FN-kappa B/metabolismo , Neuronas/inmunología , Proantocianidinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(22): 7898-905, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24850861

RESUMEN

Life's origin entails enclosing a compartment to hoard material, energy, and information. The envelope necessarily comprises amphipaths, such as prebiotic fatty acids, to partition the two aqueous domains. The self-assembled lipid bilayer comes with a set of properties including its strong anisotropic internal forces that are chemically or physically malleable. Added bilayer stretch can alter force vectors on embedded proteins to effect conformational change. The force-from-lipid principle was demonstrated 25 y ago when stretches opened purified Escherichia coli MscL channels reconstituted into artificial bilayers. This reductionistic exercise has rigorously been recapitulated recently with two vertebrate mechanosensitive K(+) channels (TREK1 and TRAAK). Membrane stretches have also been known to activate various voltage-, ligand-, or Ca(2+)-gated channels. Careful analyses showed that Kv, the canonical voltage-gated channel, is in fact exquisitely sensitive even to very small tension. In an unexpected context, the canonical transient-receptor-potential channels in the Drosophila eye, long presumed to open by ligand binding, is apparently opened by membrane force due to PIP2 hydrolysis-induced changes in bilayer strain. Being the intimate medium, lipids govern membrane proteins by physics as well as chemistry. This principle should not be a surprise because it parallels water's paramount role in the structure and function of soluble proteins. Today, overt or covert mechanical forces govern cell biological processes and produce sensations. At the genesis, a bilayer's response to osmotic force is likely among the first senses to deal with the capricious primordial sea.


Asunto(s)
Evolución Biológica , Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/química , Mecanotransducción Celular/fisiología , Origen de la Vida , Tacto/fisiología , Animales , Humanos , Presión Osmótica , Estrés Mecánico
16.
Pflugers Arch ; 467(1): 27-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24888690

RESUMEN

Focus on touch and hearing distracts attention from numerous subconscious force sensors, such as the vital control of blood pressure and systemic osmolarity, and sensors in nonanimals. Multifarious manifestations should not obscure invariant and fundamental physicochemical principles. We advocate that force from lipid (FFL) is one such principle. It is based on the fact that the self-assembled bilayer necessitates inherent forces that are large and anisotropic, even at life's origin. Functional response of membrane proteins is governed by bilayer force changes. Added stress can redirect these forces, leading to geometric changes of embedded proteins such as ion channels. The FFL principle was first demonstrated when purified bacterial mechanosensitive channel of large conductance (MscL) remained mechanosensitive (MS) after reconstituting into bilayers. This key experiment has recently been unequivocally replicated with two vertebrate MS K2p channels. Even the canonical Kv and the Drosophila canonical transient receptor potentials (TRPCs) have now been shown to be MS in biophysical and in physiological contexts, supporting the universality of the FFL paradigm. We also review the deterministic role of mechanical force during stem cell differentiation as well as the cell-cell and cell-matrix tethers that provide force communications. In both the ear hair cell and the worm's touch neuron, deleting the cadherin or microtubule tethers reduces but does not eliminate MS channel activities. We found no evidence to distinguish whether these tethers directly pull on the channel protein or a surrounding lipid platform. Regardless of the implementation, pulling tether tenses up the bilayer. Membrane tenting is directly visible at the apexes of the stereocilia.


Asunto(s)
Membrana Celular/fisiología , Canales Iónicos/fisiología , Membrana Dobles de Lípidos/metabolismo , Mecanotransducción Celular/fisiología , Fluidez de la Membrana/fisiología , Activación del Canal Iónico/fisiología , Modelos Biológicos , Estrés Mecánico
17.
Exp Clin Cardiol ; 20(10): 6550-6560, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26778915

RESUMEN

EC coupling is subjected to a mechanical feedback, which originates from physical force-sensing ion channels in the pericardium and elsewhere. Reviewed here are the most recent developments that greatly advanced our understanding of these mechanosensitive (MS) channels, including TRPs and K2p's. Patch clamp has continued to demonstrate the direct channel activation by membrane stretch. Crystallography and cryo-electron microscopy have revealed the structures of several MS channels at atomic resolution. Some have been purified to homogeneity, reconstituted into lipid bilayer, and still retain their ability to respond to stretch force. A force-from-lipid (FFL) theory has been advanced that emphasizes the strong binding between channel proteins and lipids. Through these bonds, the sharp lateral tension (akin to surface tension) of the bilayer can transmit added force to the channel protein. Like temperature sensitivity, sensitivity to mechanical force is far more pervasive than we previously realize, and is especially important to the beating heart.

18.
Nat Commun ; 15(1): 5244, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898000

RESUMEN

Methaqualone, a quinazolinone marketed commercially as Quaalude, is a central nervous system depressant that was used clinically as a sedative-hypnotic, then became a notorious recreational drug in the 1960s-80s. Due to its high abuse potential, medical use of methaqualone was eventually prohibited, yet it persists as a globally abused substance. Methaqualone principally targets GABAA receptors, which are the major inhibitory neurotransmitter-gated ion channels in the brain. The restricted status and limited accessibility of methaqualone have contributed to its pharmacology being understudied. Here, we use cryo-EM to localize the GABAA receptor binding sites of methaqualone and its more potent derivative, PPTQ, to the same intersubunit transmembrane sites targeted by the general anesthetics propofol and etomidate. Both methaqualone and PPTQ insert more deeply into subunit interfaces than the previously-characterized modulators. Binding of quinazolinones to this site results in widening of the extracellular half of the ion-conducting pore, following a trend among positive allosteric modulators in destabilizing the hydrophobic activation gate in the pore as a mechanism for receptor potentiation. These insights shed light on the underexplored pharmacology of quinazolinones and further elucidate the molecular mechanisms of allosteric GABAA receptor modulation through transmembrane binding sites.


Asunto(s)
Microscopía por Crioelectrón , Receptores de GABA-A , Receptores de GABA-A/metabolismo , Receptores de GABA-A/química , Sitios de Unión , Humanos , Animales , Etomidato/farmacología , Etomidato/análogos & derivados , Propofol/farmacología , Propofol/química , Quinazolinonas/farmacología , Quinazolinonas/química , Regulación Alostérica/efectos de los fármacos , Células HEK293 , Hipnóticos y Sedantes/farmacología
19.
ACS Chem Neurosci ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287508

RESUMEN

A recently reported behavioral screen in larval zebrafish for phenocopiers of known anesthetics and associated drugs yielded an isoflavone. Related isoflavones have also been reported as GABAA potentiators. From this, we synthesized a small library of isoflavones and incorporated an in vivo phenotypic approach to perform structure-behavior relationship studies of the screening hit and related analogs via behavioral profiling, patch-clamp experiments, and whole brain imaging. This revealed that analogs effect a range of behavioral responses, including sedation with and without enhancing the acoustic startle response. Interestingly, a subset of compounds effect sedation and enhancement of motor responses to both acoustic and light stimuli. Patch clamp recordings of cells with a human GABAA receptor confirmed that behavior-modulating isoflavones modify the GABA signaling. To better understand these molecules' nuanced effects on behavior, we performed whole brain imaging to reveal that analogs differentially effect neuronal activity. These studies demonstrate a multimodal approach to assessing activities of neuroactives.

20.
Microbiology (Reading) ; 159(Pt 5): 970-979, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23475949

RESUMEN

The yeast Saccharomyces cerevisiae CCH1 gene encodes a homologue of the pore-forming α1 subunit of mammalian voltage-gated calcium channels. Cch1 cooperates with Mid1, a candidate for a putative, functional homologue of the mammalian regulatory subunit α2/δ, and is essential for Ca(2+) influx induced by several stimuli. Here, we characterized two mutant alleles of CCH1, CCH1* (or CCH1-star, carrying four point mutations: V49A, N1066D, Y1145H and N1330S) and cch1-2 (formerly designated mid3-2). The product of CCH1* displayed a marked increase in Ca(2+) uptake activity in the presence and absence of α-factor, and its increased activity was still dependent on Mid1. Mutations in CCH1* did not affect its susceptibility to regulation by calcineurin. In addition, not only was the N1066D mutation in the cytoplasmic loop between domains II and III responsible for the increased activity of Cch1*, but also substitution of another negatively charged amino acid Glu for Asn(1066) resulted in a significant increase in the Ca(2+) uptake activity of Cch1. This is the first report of a hyperactive mutation in Cch1. On the other hand, the cch1-2 allele possesses the P1228L mutation located in the extracellular S1-S2 linker of domain III. The Pro(1228) residue is highly conserved from fungi to humans, and the P1228L mutation led to a partial loss in Cch1 function, but did not affect the localization and expression of Cch1. The results extend our understanding of the structure-function relationship and functional regulation of Cch1.


Asunto(s)
Canales de Calcio/genética , Mutación Missense , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Calcio/metabolismo , Canales de Calcio/química , Canales de Calcio/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA