Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(26): 8080-8088, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888232

RESUMEN

Among various mRNA carrier systems, lipid nanoparticles (LNPs) stand out as the most clinically advanced. While current clinical trials of mRNA/LNP therapeutics mainly address liver diseases, the potential of mRNA therapy extends far beyond─yet to be unraveled. To fully unlock the promises of mRNA therapy, there is an urgent need to develop safe and effective LNP systems that can target extrahepatic organs. Here, we report on the development of sulfonium lipid nanoparticles (sLNPs) for systemic mRNA delivery to the lungs. sLNP effectively and specifically delivered mRNA to the lungs following intravenous administration in mice. No evidence of lung and systemic inflammation or toxicity in major organs was induced by sLNP. Our findings demonstrated that the newly developed lung-specific sLNP platform is both safe and efficacious. It holds great promise for advancing the development of new mRNA-based therapies for the treatment of lung-associated diseases and conditions.


Asunto(s)
Lípidos , Pulmón , Nanopartículas , ARN Mensajero , Animales , Pulmón/metabolismo , Nanopartículas/química , Ratones , ARN Mensajero/genética , ARN Mensajero/administración & dosificación , Lípidos/química , Humanos , Compuestos de Sulfonio/química , Técnicas de Transferencia de Gen , Liposomas
2.
Cancer Immunol Immunother ; 73(1): 10, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231444

RESUMEN

The antigen processing machinery (APM) components needed for a tumor cell to present an antigen to a T cell are expressed at low levels in solid tumors, constituting an important mechanism of immune escape. More than most other solid tumors, head and neck squamous cell carcinoma (HNSCC) cells tend to have low APM expression, rendering them insensitive to immune checkpoint blockade and most other forms of immunotherapy. In HNSCC, this APM deficiency is largely driven by high levels of EGFR and SHP2, leading to low expression and activation of STAT1; however, recent studies suggest that p53, which is often mutated in HNSCCs, may also play a role. In the current study, we aimed to investigate the extent to which STAT1 and p53 individually regulate APM component expression in HNSCC cells. We found that in cells lacking functional p53, APM expression could still be induced by interferon-gamma or DNA-damaging chemotherapy (cisplatin) as long as STAT1 expression remained intact; when both transcription factors were knocked down, APM component expression was abolished. When we bypassed these deficient pathways by rescuing the expression of NLRC5, APM expression was also restored. These results suggest that dual loss of functional STAT1 and p53 may render HNSCC cells incapable of processing and presenting antigens, but rescue of downstream NLRC5 expression may be an attractive strategy for restoring sensitivity to T cell-based immunotherapy.


Asunto(s)
Presentación de Antígeno , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteína p53 Supresora de Tumor/genética , Neoplasias de Cabeza y Cuello/genética , Cisplatino , Factor de Transcripción STAT1/genética , Péptidos y Proteínas de Señalización Intracelular
3.
Mol Pharm ; 21(5): 2340-2350, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38546166

RESUMEN

Uveal melanoma (UM) is the most common primary ocular malignancy in adults and has high mortality. Recurrence, metastasis, and therapeutic resistance are frequently observed in UM, but no beneficial systemic therapy is available, presenting an urgent need for developing effective therapeutic drugs. Verteporfin (VP) is a photosensitizer and a Yes-Associated Protein (YAP) inhibitor that has been used in clinical practice. However, VP's lack of tumor targetability, poor biocompatibility, and relatively low treatment efficacy hamper its application in UM management. Herein, we developed a biocompatible CD44-targeting hyaluronic acid nanoparticle (HANP) carrying VP (HANP/VP) to improve UM treatment efficacy. We found that HANP/VP showed a stronger inhibitory effect on cell proliferation than that of free VP in UM cells. Systemic delivery of HANP/VP led to targeted accumulation in the UM-tumor-bearing mouse model. Notably, HANP/VP mediated photodynamic therapy (PDT) significantly inhibited UM tumor growth after laser irradiation compared with no treatment or free VP treatment. Consistently, in HANP/VP treated tumors after laser irradiation, the tumor proliferation and YAP expression level were decreased, while the apoptotic tumor cell and CD8+ immune cell levels were elevated, contributing to effective tumor growth inhibition. Overall, the results of this preclinical study showed that HANP/VP is an effective nanomedicine for tumor treatment through PDT and inhibition of YAP in the UM tumor mouse model. Combining phototherapy and molecular-targeted therapy offers a promising approach for aggressive UM management.


Asunto(s)
Proliferación Celular , Ácido Hialurónico , Melanoma , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Neoplasias de la Úvea , Verteporfina , Verteporfina/farmacología , Verteporfina/uso terapéutico , Animales , Fotoquimioterapia/métodos , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/patología , Ratones , Melanoma/tratamiento farmacológico , Melanoma/patología , Humanos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Línea Celular Tumoral , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Ácido Hialurónico/química , Receptores de Hialuranos/metabolismo , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Ratones Endogámicos BALB C , Femenino
4.
BMC Public Health ; 24(1): 1769, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961390

RESUMEN

BACKGROUND: This study aimed to assess the public knowledge regarding Alzheimer's Disease (AD) in Zhuhai, China, focusing on identifying knowledge gaps and the influence of demographic and health factors. METHODS: A cross-sectional study was conducted in Zhuhai, China, from October to November 2022. A total of 1986 residents from 18 communities were selected employing stratified multi-stage equi-proportional sampling. Questionnaires covering general information and the Alzheimer's Disease Knowledge Scale (ADKS) were investigated face-to-face. Ordinal multiclass logistic regression was applied to assess the relationship between AD awareness and demographic and health characteristics. RESULTS: The average ADKS score was 18.5 (SD = 3.36) in Zhuhai. The lowest awareness rates were observed in the "Symptoms" and "Caregiving" subdomains of ADKS, with rates of 51.01% and 43.78%, respectively. The correct rates for the 30 ADKS questions ranged from 16.62 to 92.6%, showing a bimodal pattern with clusters around 80% and 20%. Women (OR = 1.203, 95% CI: 1.009-1.435), individuals aged 60 years or older (OR = 2.073, 95% CI: 1.467-2.932), those living in urban areas (OR = 1.361, 95% CI: 1.117-1.662), higher average monthly household income per capita (OR = 1.641, 95% CI: 1.297-2.082), and without any neurological or mental disorders (OR = 1.810, 95% CI: 1.323-2.478) were more likely to have higher levels of awareness about Alzheimer's disease. CONCLUSIONS: Adults in Zhuhai show a limited knowledge of AD, particularly in the 'Symptoms' and 'Caregiving' subdomains. Upcoming health campaigns must focus on bridging the knowledge gaps in different subdomains of AD, especially among subgroups with lower awareness, as identified in our study.


Asunto(s)
Enfermedad de Alzheimer , Conocimientos, Actitudes y Práctica en Salud , Humanos , Estudios Transversales , China/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Encuestas y Cuestionarios , Adulto Joven
5.
Plant Dis ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170442

RESUMEN

In September 2022, leaf blight symptoms (Fig. 1) were detected on six-year-old kiwi trees (Actinidia chinensis cv. 'Hongyang') in Xuzhou municipality (117.29º E, 34.23º N), Jiangsu Province. Early-stage disease symptoms included light brown necrotic lesions of irregular shape ranging in length from 0.2 to 2.4 cm, which turned into leaf blight after approximately 2 weeks. Those symptoms were similar to those previously reported during a Pestalotiopsis sp. infection on kiwi trees in Turkey (Karakaya 2001). Approximately 20% of the leaves from 300 trees examined in one kiwi orchard, 3000 m2 in size, showed the disease symptoms. Ten leading edges of symptomatic leaves were sterilized with 2% sodium hypochlorite for 1 min, rinsed twice with sterile ddH2O and cultured at 26ºC for 3 days on PDA medium containing 50 µg/ml chloramphenicol. The fungal colonies were collected, and the single spore isolation method was used to obtain four isolates. The obtained isolates showed white aerial mycelia that turned greyish after 2 days of cultivation on PDA medium at 26ºC. ITS (OR054113, OR054153-OR054155), TUB2 (OR060951-OR060953, OR249978), and CMD (OR255947-OR255950) genes were amplified using the ITS1/ITS4, BT2a/BT2b and CMD5/CMD6 primers, respectively (Visagie et al. 2014a). The obtained ITS, TUB2, and CMD sequences shared 99.81%-100%, 96.72%-96.96%, and 90.17%-92.58% homology compared to the ex-type strain P. oxalicum CBS 219.30 (MH855125, KF296462, and KF296367), while the obtained ITS and TUB2 sequences showed 99.62%-99.81%, and 96.46%-96.72% identity compared to the representative strain P. oxalicum DTO 179B9 (KJ775647 and KJ775140) (Visagie et al. 2014b). The sequences obtained also showed high homology compared to P. oxalicum HP7-1 (ITS: 99.81%-100% homology; TUB2: 98.98%-99.38% homology; CMD: 94.71%-95.10% homology) (Li et al. 2022). A molecular phylogenetic tree was constructed using MEGA X with representative Penicillium strains retrieved from GenBank (Fig. 2). Microscope observations revealed the presence of curved septate hyphae. Conidia were colorless, unicellular, and ellipsoidal (5-8 µm in length; > 2000 observations), whereas conidiophores were mainly monoverticillate (approximately 20% of the conidiophores were biverticillate) (50-70 µm in length; 43 observations) and contained cylindrical phialides (13-15 µm in length). These findings are consistent with P. oxalicum morphology (Wu et al. 2022; Zheng et al. 2023). The pathogenicity of the four isolates was screened using healthy non-detached 'Hongyang' kiwi leaves. Fifteen leaves from five different two-month-old trees were used for each isolate, with three repetitions. For inoculation, a 10 mL solution containing 1 × 106 spores/mL was sprayed on the leaves. Sterilized water was used in the control experiment, which was carried out using fifteen leaves from five different two-month-old trees, with three repetitions. Inoculated trees were stored at 26ºC and 60% relative humidity for 2 days. All the infected leaves had necrotic lesions and leaf blight symptoms comparable to those found in the field, but the control leaves had no lesions. The pathogen was recovered, and its identity was confirmed by ITS sequencing and morphology analysis, fulfilling Koch's postulates. P. oxalicum is a common cause of blue mould in postharvest fruits (Tang et al. 2020). P. oxalicum has been recently reported as the causal agent of leaf spot in pineapple (Wu et al. 2022; Zheng et al. 2023), and leaf blight on maize (Han et al. 2023). Although Alternaria sp., Glomerella cingulate, Pestalotiopsis sp., Phomopsis sp., and Phoma sp. were previously isolated from kiwi leaves with blight symptoms (Kim et al. 2017), this is the first report of P. oxalicum causing leaf blight on kiwi trees worldwide. P. oxalicum is a well-known source of mycotoxins, such as secalonic acid (Otero et al. 2020), indicating that its presence in kiwifruit orchards may pose a significant risk to human health. The discovery of this hazardous pathogen in kiwi trees must drive the development of management strategies. Kiwifruit is an important dietary source of vitamins, fiber, folate, and potassium, and China is the major producer of kiwifruit, with more than 1.2 million metric tons harvested in 2021. This report will help to generate a better understanding of the pathogens affecting kiwifruit orchards in China.

6.
Angew Chem Int Ed Engl ; 63(28): e202404186, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38691059

RESUMEN

The introduction of nitrogen-containing functional groups to chiral polymer backbones enables the tailoring of physical properties and offers opportunities for further post-polymerization modification. However, the substrate scope of such polymers is extremely limited because monomers having nitrogen-containing groups can change coordination state with respect to the metal centers, thus decreasing the activity and enantioselectivity and even poisoning the catalyst completely. In this paper, we report our attempts to carry out the asymmetric copolymerization of meso-epoxide with highly reactive isocyanates. In particular, we found that biphenol-linked bimetallic Co(III) complexes with multiple chiral centers are very efficient in catalyzing this asymmetric copolymerization reaction, affording optically active polyurethanes with a completely alternating nature and a high enantioselectivity of up to 94 % ee. Crucially, we identified that the steric hindrance at the phenolate ortho position of the ligand strongly influences the catalytic activity and product enantioselectivity. In addition, density functional theory calculations revealed that the highly sterically bulky substituents change the mechanism from bimetallic to monometallic, and result in the unexpected inversion of the chiral induction direction. Moreover, the high stereoregularity of the produced polyurethanes enhances their thermal stability, and they can be selectively decomposed into oxazolidinones. This study offers a versatile methodology for the synthesis of chiral polymers containing nitrogen functionalities.

7.
J Exp Clin Cancer Res ; 43(1): 168, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877579

RESUMEN

PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/patología , Muerte Celular , Necroptosis , Microambiente Tumoral/inmunología , Animales , Piroptosis , Apoptosis
8.
Exp Hematol Oncol ; 13(1): 10, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287402

RESUMEN

Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.

9.
Biomed Mater Eng ; 35(2): 99-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217572

RESUMEN

BACKGROUND: Intervertebral cages used in clinical applications were often general products with standard specifications, which were challenging to match with the cervical vertebra and prone to cause stress shielding and subsidence. OBJECTIVE: To design and fabricate customized tantalum (Ta) intervertebral fusion cages that meets the biomechanical requirements of the cervical segment. METHODS: The lattice intervertebral cages were customized designed and fabricated by the selective laser melting. The joint and muscle forces of the cervical segment under different movements were analyzed using reverse dynamics method. The stress characteristics of cage, plate, screws and vertebral endplate were analyzed by finite element analysis. The fluid flow behaviors and permeability of three lattice structures were simulated by computational fluid dynamics. Compression tests were executed to investigate the biomechanical properties of the cages. RESULTS: Compared with the solid cages, the lattice-filled structures significantly reduced the stress of cages and anterior fixation system. In comparison to the octahedroid and quaddiametral lattice-filled cages, the bitriangle lattice-filled cage had a lower stress shielding rate, higher permeability, and superior subsidence resistance ability. CONCLUSION: The inverse dynamics simulation combined with finite element analysis is an effective method to investigate the biomechanical properties of the cervical vertebra during movements.


Asunto(s)
Fusión Vertebral , Tantalio , Fenómenos Biomecánicos , Fusión Vertebral/métodos , Placas Óseas , Análisis de Elementos Finitos , Impresión Tridimensional , Vértebras Lumbares/cirugía
10.
J Orthop Surg Res ; 19(1): 98, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291442

RESUMEN

BACKGROUND: Injectable bone cement is commonly used in clinical orthopaedics to fill bone defects, treat vertebral compression fractures, and fix joint prostheses during joint replacement surgery. Poly(propylene fumarate) (PPF) has been proposed as a biodegradable and injectable alternative to polymethylmethacrylate (PMMA) bone cement. Recently, there has been considerable interest in two-dimensional (2D) black phosphorus nanomaterials (BPNSs) in the biomedical field due to their excellent photothermal and osteogenic properties. In this study, we investigated the biological and physicochemical qualities of BPNSs mixed with PPF bone cement created through thermal cross-linking. METHODS: PPF was prepared through a two-step process, and BPNSs were prepared via a liquid phase stripping method. BP/PPF was subsequently prepared through thermal cross-linking, and its characteristics were thoroughly analysed. The mechanical properties, cytocompatibility, osteogenic performance, degradation performance, photothermal performance, and in vivo toxicity of BP/PPF were evaluated. RESULTS: BP/PPF exhibited low cytotoxicity levels and mechanical properties similar to that of bone, whereas the inclusion of BPNSs promoted preosteoblast adherence, proliferation, and differentiation on the surface of the bone cement. Furthermore, 200 BP/PPF demonstrated superior cytocompatibility and osteogenic effects, leading to the degradation of PPF bone cement and enabling it to possess photothermal properties. When exposed to an 808-nm laser, the temperature of the bone cement increased to 45-55 °C. Furthermore, haematoxylin and eosin-stained sections from the in vivo toxicity test did not display any anomalous tissue changes. CONCLUSION: BP/PPF exhibited mechanical properties similar to that of bone: outstanding photothermal properties, cytocompatibility, and osteoinductivity. BP/PPF serves as an effective degradable bone cement and holds great potential in the field of bone regeneration.


Asunto(s)
Fracturas por Compresión , Fumaratos , Polipropilenos , Fracturas de la Columna Vertebral , Humanos , Osteogénesis , Cementos para Huesos/farmacología , Cementos para Huesos/química , Fósforo , Materiales Biocompatibles/química
11.
Pathol Res Pract ; 256: 155258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522123

RESUMEN

Colorectal cancer (CRC) is the third most common cancer in the world. According to several types of research, statins may impact the development and treatment of CRC. This work aimed to use bioinformatics to discover the relationship between statin targets and differentially expressed genes (DEGs) in CRC patients and determine the possible molecular effect of statins on CRC suppression. We used CRC datasets from the GEO database to select CRC-related DEGs. DGIdb and STITCH databases were used to identify gene targets of subtypes of statin. Further, we identified the statin target of CRC DEGs hub genes by using a Venn diagram of CRC DEGs and statin targets. Funrich and enrichr databases were carried out for the KEGG pathway and gene ontology (GO) enrichment analysis, respectively. GSE74604 and GSE10950 were used to identify CRC DEGs. After analyzing datasets,1370 genes were identified as CRC DEGs, and 345 targets were found for statins. We found that 35 genes are CRC DEGs statin targets. We found that statin targets in CRC were enriched in the receptor and metallopeptidase activity for molecular function, cytoplasm and plasma membrane for cellular component, signal transduction, and cell communication for biological process genes were substantially enriched based on FunRich enrichment. Analysis of the KEGG pathways revealed that the overexpressed DEGs were enriched in the IL-17, PPAR, and Toll-like receptor signaling pathways. Finally, CCNB1, DNMT1, AURKB, RAC1, PPARGC1A, CDKN1A, CAV1, IL1B, and HSPD1 were identified as hub CRC DEGs statin targets. The genetic and molecular aspects of our findings reveal that statins might have a therapeutic effect on CRC.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Transducción de Señal/genética , Bases de Datos Genéticas , Oncogenes , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética
12.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38371320

RESUMEN

Tobacco smoking is a major driver of head and neck squamous cell carcinoma (HNSCC) occurrence, and previous studies have shed light on the precise molecular alterations in tobacco-related HNSCCs when compared to HNSCCs associated with other risk factors (ex: human papillomavirus/HPV status). In this study, we analyzed the gene expression differences in HNSCC cases with a recent smoking history and revealed that the nicotinic acetylcholine receptor CHRNA5 is differentially overexpressed in smoking-related HNSCCs. CHRNA5 overexpression in these HNSCCs corresponds with a worse prognosis and is inversely correlated with an immune expression signature commonly associated with better prognosis. From these results, our study highlights the potential role of the nicotine-activated CHRNA5 receptor in HNSCC progression and corresponds with other recent reports highlighting the potential role of nicotine induction in promoting cancer progression.

13.
J Exp Clin Cancer Res ; 43(1): 203, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044272

RESUMEN

BACKGROUND: Blacks/African American (BAA) patients diagnosed with head and neck squamous cell carcinoma (HNSCC) have worse survival outcomes than White patients. However, the mechanisms underlying racial disparities in HNSCC have not been thoroughly characterized. METHODS: Data on gene expression, copy number variants (CNVs), gene mutations, and methylation were obtained from 6 head and neck cancer datasets. Comparative bioinformatics analysis of the above genomic features was performed between BAAs and Whites. The expression pattern of GSTM1 was validated by immunohistochemistry using tumor tissue microarray (TMA). Effect of GSTM1 knockdown were assessed by cell proliferation, colony formation, and tumor development in an orthotopic mouse model. The changes in protein kinases were determined using the Proteome Profiler Human Phospho-Kinase Array Kit in HNSCC cells with or without GSTM1 knockdown. RESULTS: We identified ancestry-related differential genomic profiles in HNSCC. Specifically, in BAA HNSCC, FAT1 mutations were associated with its gene expression, SALL3 gene expression correlated with its gene CNVs, and RTP4 gene expression showed an inverse correlation with its methylation. Notably, GSTM1 emerged as a prognostic risk factor for BAA HNSCC, with high gene CNVs and expression levels correlating with poor overall survival in BAA patients. Immunohistochemistry results from newly developed in-house TMA validated the expression pattern of GSTM1 between BAA HNSCC and White HNSCC. In an orthotopic mouse model, GSTM1 knockdown significantly inhibited malignant progression in tumors derived from BAAs. In contrast, loss of GSTM1 did not affect the development of HNSCC originating in Whites. Mechanistically, GSTM1 knockdown suppressed HSP27 phosphorylation and ß-catenin in BAA HNSCC cells, but not in White HNSCC cells. This differential effect at least partially contributes to tumor development in BAA patients. CONCLUSION: This study identifies GSTM1 as a novel molecular determinant of survival in HNSCC patients of African descent. It also provides a molecular basis for future research focused on identifying molecular determinants and developing therapeutic interventions to improve outcomes for BAA patients with HNSCC.


Asunto(s)
Glutatión Transferasa , Neoplasias de Cabeza y Cuello , Animales , Femenino , Humanos , Masculino , Ratones , Biomarcadores de Tumor/genética , Negro o Afroamericano/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Glutatión Transferasa/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/mortalidad , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Blanco/genética
14.
Sci Adv ; 10(8): eadk3663, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394204

RESUMEN

Glycolytic metabolism may account for antitumor immunity failure. Pyruvate kinase M2 (PKM2) and platelet phosphofructokinase (PFKP), two key enzymes involved in the glycolytic pathway, are hyperactivated in head and neck squamous cell carcinoma (HNSCC). Using ganetespib as a drug model for heat shock protein 90 (HSP90) inhibition and combining results from clinical trials and animal treatment, we demonstrated that HSP90 inhibition leads to a blockade of glycolytic flux in HNSCC cells by simultaneously suppressing PKM2 and PFKP at both the transcriptional and posttranslational levels. Down-regulation of tumor glycolysis facilitates tumor infiltration of cytotoxic T cells via suppression of glycolysis-dependent interleukin-8 signaling. The addition of ganetespib to radiation attenuates radiation-induced up-regulation of PKM2 and PFKP and potentiates T cell-mediated antitumor immunity, resulting in a more potent antitumor effect than either treatment alone, providing a molecular basis for exploring the combination of HSP90 inhibitors with radiotherapy to improve outcomes for patients with HNSCC.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Animales , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/radioterapia , Antineoplásicos/farmacología , Glucólisis
15.
J Exp Clin Cancer Res ; 43(1): 76, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38468260

RESUMEN

BACKGROUND: While T cell-activating immunotherapies against recurrent head and neck squamous cell carcinoma (HNSCC) have shown impressive results in clinical trials, they are often ineffective in the majority of patients. NK cells are potential targets for immunotherapeutic intervention; however, the setback in monalizumab-based therapy in HNSCC highlights the need for an alternative treatment to enhance their antitumor activity. METHODS: Single-cell RNA sequencing (scRNA-seq) and TCGA HNSCC datasets were used to identify key molecular alterations in NK cells. Representative HPV-positive ( +) and HPV-negative ( -) HNSCC cell lines and orthotopic mouse models were used to validate the bioinformatic findings. Changes in immune cells were examined by flow cytometry and immunofluorescence. RESULTS: Through integration of scRNA-seq data with TCGA data, we found that the impact of IL6/IL6R and CCL2/CCR2 signaling pathways on evasion of immune attack by NK cells is more pronounced in the HPV - HNSCC cohort compared to the HPV + HNSCC cohort. In orthotopic mouse models, blocking IL6 with a neutralizing antibody suppressed HPV - but not HPV + tumors, which was accompanied by increased tumor infiltration and proliferation of CD161+ NK cells. Notably, combining the CCR2 chemokine receptor antagonist RS504393 with IL6 blockade resulted in a more pronounced antitumor effect that was associated with more activated intratumoral NK cells in HPV - HNSCC compared to either agent alone. CONCLUSIONS: These findings demonstrate that dual blockade of IL6 and CCR2 pathways effectively enhances the antitumor activity of NK cells in HPV-negative HNSCC, providing a novel strategy for treating this type of cancer.


Asunto(s)
Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Animales , Ratones , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Interleucina-6/metabolismo , Infecciones por Papillomavirus/complicaciones , Recurrencia Local de Neoplasia/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Células Asesinas Naturales , Receptores CCR2/genética , Receptores CCR2/metabolismo
16.
Cancer Res ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024547

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is addicted to glutaminolysis. Targeting this metabolic dependency has emerged as a potential therapeutic approach for HNSCC. Here, we conducted a bioinformatic analysis of the TCGA HNSCC cohort that revealed a robust correlation between expression of c-Myc and GLS1, which catalyzes the first step in glutaminolysis. Intriguingly, disruption of GLS1 signaling in HNSCC cells by genetic depletion or CB-839 treatment resulted in a reduction in c-Myc protein stability via a USP1-dependent ubiquitin-proteasome pathway. On the other hand, c-Myc directly binds to the promoter region of GLS1 and upregulates its transcription. Notably, the GLS1-c-Myc pathway enhanced ACC-dependent SLUG acetylation, prompting cancer cell invasion and metastasis. Thus, the GLS1-c-Myc axis emerged as a positive feedback loop critical for driving the aggressiveness of HNSCC. Therapeutically, combining CB-839 with the c-Myc inhibitor MYCi975 strongly suppressed GLS1-c-Myc signaling, resulting in a superior antitumor effect compared to either single agent in an orthotopic mouse model of HNSCC. These findings hold promise for the development of effective therapies for HNSCC patients, addressing an urgent need arising from the significant incidence and high metastatic rate of the disease.

17.
Int J Biol Macromol ; 276(Pt 1): 133272, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38906352

RESUMEN

This study aims to investigate the effect of pulsed electric field (PEF) assisted OSA esterification treatment on the multi-scale structure and digestive properties of cassava starch and structure-digestion relationships. The degree of substitution (DS) of starch dually modified at 1.5-4.5 kV/cm was 37.6-55.3 % higher than that of starch modified by the conventional method. Compared with native starch, the resistant starch (RS) content of esterified starch treated with 3 kV/cm significantly increased by 17.13 %, whereas that of starch produced by the conventional method increased by only 5.91 %. Furthermore, assisted esterification at low electric fields (1.5-3 kV/cm) promotes ester carbonyl grafting on the surface of starch granules, increases steric hindrance and promotes the rearrangement of the amorphous regions of starch, which increases the density of the double-helical structure. These structural changes slow down starch digestion and increase the RS content. Therefore, this study presents a potential method for increasing the RS content of starch products using PEF to achieve the desired digestibility.


Asunto(s)
Electricidad , Manihot , Almidón , Manihot/química , Esterificación , Almidón/química , Almidón Resistente
18.
ACS Nano ; 18(10): 7618-7632, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422984

RESUMEN

Calcium nanoparticles have been investigated for applications, such as drug and gene delivery. Additionally, Ca2+ serves as a crucial second messenger in the activation of immune cells. However, few studies have systematically studied the effects of calcium nanoparticles on the calcium levels and functions within immune cells. In this study, we explore the potential of calcium nanoparticles as a vehicle to deliver calcium into the cytosol of dendritic cells (DCs) and influence their functions. We synthesized calcium hydroxide nanoparticles, coated them with a layer of silica to prevent rapid degradation, and further conjugated them with anti-CD205 antibodies to achieve targeted delivery to DCs. Our results indicate that these nanoparticles can efficiently enter DCs and release calcium ions in a controlled manner. This elevation in cytosolic calcium activates both the NFAT and NF-κB pathways, in turn promoting the expression of costimulatory molecules, antigen-presenting molecules, and pro-inflammatory cytokines. In mouse tumor models, the calcium nanoparticles enhanced the antitumor immune response and augmented the efficacy of both radiotherapy and chemotherapy without introducing additional toxicity. Our study introduces a safe nanoparticle immunomodulator with potential widespread applications in cancer therapy.


Asunto(s)
Calcio , Nanopartículas , Animales , Ratones , Calcio/metabolismo , Citosol/metabolismo , Citocinas/metabolismo , Células Dendríticas , Inmunoterapia/métodos
19.
Org Lett ; 26(2): 542-546, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38189289

RESUMEN

Electrocarboxylation of the C(sp3)-O bond in 1,3-oxazolidin-2-ones with CO2 to achieve ß-amino acids is developed. The C-O bond in substrates can be selectively cleaved via the single electron transfer on the surface of a cathode or through a CO2• - intermediate under additive-free conditions. A great diversity of ß-amino acids can be obtained in a moderate to excellent yield and readily converted to various biologically active compounds.

20.
Virchows Arch ; 484(6): 885-900, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491228

RESUMEN

Classification of tumors of the head and neck has evolved in recent decades including a widespread application of molecular testing in tumors of the sinonasal tract, salivary glands, and soft tissues with a predilection for the head and neck. The availability of new molecular techniques has allowed for the definition of multiple novel tumor types unique to head and neck sites. Moreover, an expanding spectrum of immunohistochemical markers specific to genetic alterations facilitates rapid identification of diagnostic molecular abnormalities. As such, it is currently possible for head and neck pathologists to benefit from a molecularly defined tumor classification while making diagnoses that are still based largely on histopathology and immunohistochemistry. This review covers the principal molecular alterations in sinonasal malignancies, such as alterations in DEK, AFF2, NUTM1, IDH1-2, and SWI/SNF genes in particular, that are important from a practical standpoint for diagnosis, prognosis, and prediction of response to treatment.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de los Senos Paranasales , Humanos , Neoplasias de los Senos Paranasales/patología , Neoplasias de los Senos Paranasales/genética , Neoplasias de los Senos Paranasales/clasificación , Neoplasias de los Senos Paranasales/diagnóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA