Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(18): 26425-26448, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34859352

RESUMEN

A new one-pot synthesis method optimized by a 23 experimental design was developed to prepare a biosorbent, sugarcane bagasse cellulose succinate pyromellitate (SBSPy), for the removal of Cu(II) and Zn(II) from single-component aqueous solutions, in batch and continuous modes. The bi-functionalization of the biosorbent with ligands of different chemical structures increased its selectivity, improving its performance for removing pollutants from contaminated water. The succinate moiety favored Cu(II) adsorption, while the pyromellitate moiety favored Zn(II) adsorption. Sugarcane bagasse (SB) and SBSPy were characterized using several techniques. Analysis by 13C Multi-CP SS NMR and FTIR revealed the best order of addition of each anhydride that maximized the chemical modification of SB. The maximum adsorption capacities of SBSPy for Cu(II) and Zn(II), in batch mode, were 1.19 and 0.95 mmol g-1, respectively. Homogeneous surface diffusion, intraparticle diffusion, and Boyd models were used to determine the steps involved in the adsorption process. Isothermal titration calorimetry was used to assess changes in enthalpy of adsorption as a function of SBSPy surface coverage. Fixed-bed column adsorption of Cu(II) and Zn(II) was performed in three cycles, showing that SBSPy has potential to be used in water treatment. Breakthrough curves were well fitted by the Thomas and Bohart-Adams models.


Asunto(s)
Saccharum , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Celulosa/química , Concentración de Iones de Hidrógeno , Iones , Cinética , Saccharum/química , Ácido Succínico , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Zinc/análisis
2.
J Colloid Interface Sci ; 576: 158-175, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32416548

RESUMEN

A bioadsorbent (CEDA) capable of adsorbing As(V) and Cu(II) simultaneously was prepared by tosylation of microcrystalline cellulose (MC) and nucleophilic substitution of the tosyl group by ethylenediamine. MC, tosyl cellulose, and CEDA were characterized by elemental C, H, N, and S analysis, infrared spectroscopy, and 13C solid-state nuclear magnetic resonance spectroscopy. The adsorption of As(V) and Cu(II) on CEDA was evaluated as a function of solution pH, contact time, and initial solute concentration. The maximum adsorption capacities of CEDA for As(V) and Cu(II) were 1.62 and 1.09 mmol g-1, respectively. The interactions of As(V) and Cu(II) with CEDA were elucidated using thermodynamic parameters, molecular quantum mechanics calculations, and experiments with ion exchange of Cd(II) by Cu(II), and As(V) by SO42-. Adsorption enthalpies were determined as a function of surface coverage of the CEDA, using isothermal titration calorimetry, with ΔadsH° values of -32.24 ± 0.07 and -93 ± 2 kJ mol-1 obtained for As(V) and Cu(II), respectively. The potential to reuse CEDA was evaluated and the interference of other ions in the adsorption of As(V) and Cu(II) was investigated. Multi-component experiments showed that Cd(II), Co(II), Ni(II), and Pb(II) did not interfere in the adsorption of Cu(II), while SO42- inhibited As(V) adsorption.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Celulosa , Cobre , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Agua
3.
J Colloid Interface Sci ; 552: 752-763, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31176922

RESUMEN

In the second part of this series of studies, the bicomponent adsorption of safranin-T (ST) and auramine-O (AO) on trimellitated sugarcane bagasse (STA) was evaluated using equimolar dye aqueous solutions at two pH values. Bicomponent batch adsorption was investigated as a function of contact time, solution pH and initial concentration of dyes. Bicomponent kinetic data were fitted by the pseudo-first-order and pseudo-second-order models and the competitive model of Corsel. Bicomponent equilibrium data were fitted by the real adsorbed solution theory model. The antagonistic interactions between ST and AO in the adsorption systems studied contributed to obtain values of maximum adsorption capacity in mono- (Qmax,mono) and bicomponent (Qmax,multi) lower than unity (Qmax,multi/Qmax,mono at pH 4.5 for ST of 0.75 and AO of 0.37 and at pH 7 for ST of 0.94 and AO of 0.43). Mono- and bicomponent adsorption of dyes in a fixed-bed column was evaluated at pH 4.5. The breakthrough curves were fitted by the Thomas and Bohart-Adams original models. Desorption of ST in a fixed-bed column was studied. The results obtained from the bicomponent batch and continuous adsorption showed that the presence of ST most affected the AO adsorption than the presence of AO affected the ST adsorption.


Asunto(s)
Materiales Biomiméticos/química , Celulosa/química , Colorantes/aislamiento & purificación , Saccharum/química , Adsorción , Cationes/química , Cationes/aislamiento & purificación , Colorantes/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Tamaño de la Partícula , Soluciones , Propiedades de Superficie , Agua/química
4.
J Colloid Interface Sci ; 515: 172-188, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29335184

RESUMEN

Trimellitated-sugarcane bagasse (STA) was used as an environmentally friendly adsorbent for removal of the basic dyes auramine-O (AO) and safranin-T (ST) from aqueous solutions at pH 4.5 and 7.0. Dye adsorption was evaluated as a function of STA dosage, agitation speed, solution pH, contact time, and initial dye concentration. Pseudo-first- and pseudo-second-order, Elovich, intraparticle diffusion, and Boyd models were used to model adsorption kinetics. Langmuir, Dubinin-Radushkevich, Redlich-Peterson, Sips, Hill-de Boer, and Fowler-Guggenheim models were used to model adsorption isotherms, while a Scatchard plot was used to evaluate the existence of different adsorption sites. Maximum adsorption capacities for removal of AO and ST were 1.005 and 0.638 mmol g-1 at pH 4.5, and 1.734 and 1.230 mmol g-1 at pH 7.0, respectively. Adsorption enthalpy changes obtained by isothermal titration calorimetry (ITC) ranged from -21.07 ±â€¯0.25 to -7.19 ±â€¯0.05 kJ mol-1, indicating that both dyes interacted with STA by physisorption. Dye desorption efficiencies ranged from 41 to 51%, and re-adsorption efficiencies ranged from 66 to 87%, showing that STA can be reused in new adsorption cycles. ITC data combined with isotherm studies allowed clarification of adsorption interactions.

5.
J Colloid Interface Sci ; 512: 575-590, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29100162

RESUMEN

In the third part of this series of studies, the adsorption of the basic textile dyes auramine-O (AO) and safranin-T (ST) on a carboxylated cellulose derivative (CTA) were evaluated in mono- and bi-component spiked aqueous solutions. Adsorption studies were developed as a function of solution pH, contact time, and initial dye concentration. Adsorption kinetic data were modeled by monocomponent kinetic models of pseudo-first- (PFO), pseudo-second-order (PSO), intraparticle diffusion, and Boyd, while the competitive kinetic model of Corsel was used to model bicomponent kinetic data. Monocomponent adsorption equilibrium data were modeled by the Langmuir, Sips, Fowler-Guggenhein, Hill de-Boer, and Konda models, while the IAST and RAST models were used to model bicomponent equilibrium data. Monocomponent maximum adsorption capacities for AO and ST at pH 4.5 were 2.841 and 3.691 mmol g-1, and at pH 7.0 were 5.443 and 4.074 mmol g-1, respectively. Bicomponent maximum adsorption capacities for AO and ST at pH 7.0 were 1.230 and 3.728 mmol g-1. Adsorption enthalpy changes (ΔadsH) were obtained using isothermal titration calorimetry. The values of ΔadsH ranged from -18.83 to -5.60 kJ mol-1, suggesting that physisorption controlled the adsorption process. Desorption and re-adsorption of CTA was also evaluated.

6.
J Colloid Interface Sci ; 487: 266-280, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27788360

RESUMEN

In the second part of this series of studies, the competitive adsorption of three binary systems Cu2+-Co2+, Cu2+-Ni2+ and Co2+-Ni2+ on a carboxylated cellulose derivative (CTA) was evaluated in binary equimolar (1:1) metal-ion aqueous solutions. Bicomponent adsorption studies were developed as a function of contact time and initial metal ion concentration. Bicomponent adsorption kinetic data was modeled by monocomponent kinetic models of pseudo-first- (PFO) and pseudo-second-order (PSO) and a competitive kinetic model of Corsel. Bicomponent adsorption isotherm data was modeled by the ideal adsorbed solution theory (IAST) and real adsorbed solution theory (RAST) models. The monocomponent isotherm models implemented into the IAST were the Langmuir and Sips models, whereas for the RAST model only the Langmuir model was implemented because this model provided the best prediction of the bicomponent isotherm data. The surface of the CTA adsorbent after bicomponent adsorption of metal ions was also examined by SEM-EDX. The effect of one metal ion on the adsorption capacity of another metal ion was discussed in detail with basis on the kinetic and thermodynamics parameters. The selectivity and performance of the CTA adsorbent for the removal of Cu2+, Co2+ and Ni2+ was also evaluated and discussed.

7.
J Colloid Interface Sci ; 483: 185-200, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27552427

RESUMEN

A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2,4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state (13)C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81mmolg(-1), respectively. CTA was used as an adsorbent material to remove Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001mmolg(-1) for Co(2+), Cu(2+) and Ni(2+), respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of ΔadsH° were in the range from 5.36 to 8.09kJmol(-1), suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent.


Asunto(s)
Celulosa/síntesis química , Cobalto/aislamiento & purificación , Cobre/aislamiento & purificación , Níquel/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Anhídridos/química , Cationes Bivalentes , Celulosa/análogos & derivados , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Ácidos Tricarboxílicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA