Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Behav Immun ; 61: 127-136, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27856350

RESUMEN

The circadian clock is a transcriptional/translational feedback loop that drives the rhythmic expression of downstream mRNAs. Termed "clock-controlled genes," these molecular outputs of the circadian clock orchestrate cellular, metabolic, and behavioral rhythms. As part of our on-going work to characterize key upstream regulators of circadian mRNA expression, we have identified a novel clock-controlled gene in Drosophila melanogaster, Achilles (Achl), which is rhythmic at the mRNA level in the brain and which represses expression of antimicrobial peptides in the immune system. Achilles knock-down in neurons dramatically elevates expression of crucial immune response genes, including IM1 (Immune induced molecule 1), Mtk (Metchnikowin), and Drs (Drosomysin). As a result, flies with knocked-down Achilles expression are resistant to bacterial challenges. Meanwhile, no significant change in core clock gene expression and locomotor activity is observed, suggesting that Achilles influences rhythmic mRNA outputs rather than directly regulating the core timekeeping mechanism. Notably, Achilles knock-down in the absence of immune challenge significantly diminishes the fly's overall lifespan, indicating a behavioral or metabolic cost of constitutively activating this pathway. Together, our data demonstrate that (1) Achilles is a novel clock-controlled gene that (2) regulates the immune system, and (3) participates in signaling from neurons to immunological tissues.


Asunto(s)
Proteínas CLOCK/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Sistema Inmunológico/inmunología , Animales , Drosophila melanogaster/inmunología , Neuronas/inmunología , Transducción de Señal/genética
2.
Elife ; 72018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29809149

RESUMEN

Skeletal muscle comprises a family of diverse tissues with highly specialized functions. Many acquired diseases, including HIV and COPD, affect specific muscles while sparing others. Even monogenic muscular dystrophies selectively affect certain muscle groups. These observations suggest that factors intrinsic to muscle tissues influence their resistance to disease. Nevertheless, most studies have not addressed transcriptional diversity among skeletal muscles. Here we use RNAseq to profile mRNA expression in skeletal, smooth, and cardiac muscle tissues from mice and rats. Our data set, MuscleDB, reveals extensive transcriptional diversity, with greater than 50% of transcripts differentially expressed among skeletal muscle tissues. We detect mRNA expression of hundreds of putative myokines that may underlie the endocrine functions of skeletal muscle. We identify candidate genes that may drive tissue specialization, including Smarca4, Vegfa, and Myostatin. By demonstrating the intrinsic diversity of skeletal muscles, these data provide a resource for studying the mechanisms of tissue specialization.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Animales , Células Cultivadas , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Músculo Liso/citología , Músculo Liso/metabolismo , Miocardio/citología , Miocardio/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA