Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2220570120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364097

RESUMEN

Understanding the origins of variation in agricultural pathogens is of fundamental interest and practical importance, especially for diseases that threaten food security. Fusarium oxysporum is among the most important of soil-borne pathogens, with a global distribution and an extensive host range. The pathogen is considered to be asexual, with horizontal transfer of chromosomes providing an analog of assortment by meiotic recombination. Here, we challenge those assumptions based on the results of population genomic analyses, describing the pathogen's diversity and inferring its origins and functional consequences in the context of a single, long-standing agricultural system. We identify simultaneously low nucleotide distance among strains, and unexpectedly high levels of genetic and genomic variability. We determine that these features arise from a combination of genome-scale recombination, best explained by widespread sexual reproduction, and presence-absence variation consistent with chromosomal rearrangement. Pangenome analyses document an accessory genome more than twice the size of the core genome, with contrasting evolutionary dynamics. The core genome is stable, with low diversity and high genetic differentiation across geographic space, while the accessory genome is paradoxically more diverse and unstable but with lower genetic differentiation and hallmarks of contemporary gene flow at local scales. We suggest a model in which episodic sexual reproduction generates haplotypes that are selected and then maintained through clone-like dynamics, followed by contemporary genomic rearrangements that reassort the accessory genome among sympatric strains. Taken together, these processes contribute unique genome content, including reassortment of virulence determinants that may explain observed variation in pathogenic potential.


Asunto(s)
Fusarium , Fusarium/genética , Especificidad del Huésped , Genómica , Agricultura , Enfermedades de las Plantas/genética
2.
Mol Plant Microbe Interact ; 36(9): 584-591, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37245238

RESUMEN

Magnaporthe oryzae, a devastating pathogen of finger millet (Eleusine coracana), secretes effector molecules during infection to manipulate host immunity. This study determined the presence of avirulence effector genes PWL1 and PWL2 in 221 Eleusine blast isolates from eastern Africa. Most Ethiopian isolates carried both PWL1 and PWL2. Kenyan and Ugandan isolates largely lacked both genes, and Tanzanian isolates carried either PWL1 or lacked both. The roles of PWL1 and PWL2 towards pathogenicity on alternative chloridoid hosts, including weeping lovegrass (Eragrostis curvula), were also investigated. PWL1 and PWL2 were cloned from Ethiopian isolate E22 and were transformed separately into Ugandan isolate U34, which lacked both genes. Resulting transformants harboring either gene gained varying degrees of avirulence on Eragrostis curvula but remained virulent on finger millet. Strains carrying one or both PWL1 and PWL2 infected the chloridoid species Sporobolus phyllotrichus and Eleusine tristachya, indicating the absence of cognate resistance (R) genes for PWL1 and PWL2 in these species. Other chloridoid grasses, however, were fully resistant, regardless of the presence of one or both PWL1 and PWL2, suggesting the presence of effective R genes against PWL and other effectors. Partial resistance in some Eragrostis curvula accessions to some blast isolates lacking PWL1 and PWL2 also indicated the presence of other interactions between fungal avirulence (AVR) genes and host resistance (R) genes. Related chloridoid species thus harbor resistance genes that could be useful to improve finger millet for blast resistance. Conversely, loss of AVR genes in the fungus could expand its host range, as demonstrated by the susceptibility of Eragrostis curvula to finger millet blast isolates that had lost PWL1 and PWL2. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

3.
Mol Ecol ; 32(10): 2484-2503, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35377502

RESUMEN

Conventional wisdom states that genetic variation reduces disease levels in plant populations. Nevertheless, crop species have been subject to a gradual loss of genetic variation through selection for specific traits during breeding, thereby increasing their vulnerability to biotic stresses such as pathogens. We explored how genetic variation in Arabica coffee sites in southwestern Ethiopia was related to the incidence of four major fungal diseases. Sixty sites were selected along a gradient of management intensity, ranging from nearly wild to intensively managed coffee stands. We used genotyping-by-sequencing of pooled leaf samples (pool-GBS) derived from 16 individual coffee shrubs in each of the 60 sites to assess the variation in genetic composition (multivariate: reference allele frequency) and genetic diversity (univariate: mean expected heterozygosity) between sites. We found that genetic composition had a clear spatial pattern and that genetic diversity was higher in less managed sites. The incidence of the four fungal diseases was related to the genetic composition of the coffee stands, but in a specific way for each disease. In contrast, genetic diversity was only related to the within-site variation of coffee berry disease, but not to the mean incidence of any of the four diseases across sites. Given that fungal diseases are major challenges of Arabica coffee in its native range, our findings that genetic composition of coffee sites impacted the major fungal diseases may serve as baseline information to study the molecular basis of disease resistance in coffee. Overall, our study illustrates the need to consider both host genetic composition and genetic diversity when investigating the genetic basis for variation in disease levels.


Asunto(s)
Coffea , Micosis , Coffea/genética , Fitomejoramiento , Etiopía
4.
Mol Biol Rep ; 50(1): 43-55, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36301461

RESUMEN

BACKGROUND: Noug is an Ethiopian indigenous oilseed crop cultivated primarily for its oil and various economic importance. Evaluating the extent of genetic diversity within and among populations is one of the most important steps in breeding and conservation measures. Thus, this study aimed to uncover the extent of genetic diversity and population structure of noug accessions collected from different regions of Ethiopia using microsatellite markers. METHODS AND RESULTS: A total of 161 accessions from fourteen regions of Ethiopia, including some from Eritrea using 13 microsatellite markers were analyzed. All the 13 microsatellite markers were polymorphic and highly informative with a mean PIC value of 0.82. The analysis generated a total of 158 alleles with a mean of 12.15 per locus. The overall mean of Shannon information index and heterozygosity/gene diversity were 1.57 and 0.74, respectively suggesting the presence of higher genetic diversity across the collection regions. AMOVA revealed that 96.06% of the total genetic variation was attributed to within populations while only 3.94% was attributed to among populations. Likewise, the dendrogram clustering, PCoA, and the model-based population structure analysis didn't exactly corresponded the grouping of the genotypes according to their regions of origin. CONCLUSION: The microsatellites used in the present study are highly informative and could be targeted for developing markers for future marker-assisted breeding. Genotypes collected from Shewa, Wollo, Gojjam, Tigray, and B/G showed a higher genetic diversity and private alleles as compared to other populations. Hence, these areas can be considered as hotspots which could help for the identification of genotypes that can be used in breeding programs as well as for the implementation of further conservation programs.


Asunto(s)
Variación Genética , Fitomejoramiento , Variación Genética/genética , Etiopía , Genotipo , Repeticiones de Microsatélite/genética
5.
BMC Plant Biol ; 22(1): 69, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164709

RESUMEN

BACKGROUND: Coffea arabica L. is an economically important agricultural crop and the most popular beverage worldwide. As a perennial crop with recalcitrant seed, conservation of the genetic resources of coffee can be achieved through the complementary approach of in-situ and ex-situ field genebank. In Ethiopia, a large collection of C. arabica L. germplasm is preserved in field gene banks. Here, we report the whole-genome resequencing of 90 accessions from Choche germplasm bank representing garden and forest-based coffee production systems using Illumina sequencing technology. RESULTS: The genome sequencing generated 6.41 billion paired-end reads, with a mean of 71.19 million reads per sample. More than 93% of the clean reads were mapped onto the C. arabica L. reference genome. A total of 11.08 million variants were identified, among which 9.74 million (87.9%) were SNPs (Single nucleotide polymorphisms) and 1.34 million (12.1%) were InDels. In all accessions, genomic variants were unevenly distributed across the coffee genome. The phylogenetic analysis using the SNP markers displayed distinct groups. CONCLUSIONS: Resequencing of the coffee accessions has allowed identification of genetic markers, such as SNPs and InDels. The SNPs discovered in this study might contribute to the variation in important pathways of genes for important agronomic traits such as caffeine content, yield, disease, and pest in coffee. Moreover, the genome resequencing data and the genetic markers identified from 90 accessions provide insight into the genetic variation of the coffee germplasm and facilitate a broad range of genetic studies.


Asunto(s)
Coffea/genética , Filogeografía , Marcadores Genéticos , Genoma de Planta , Genotipo , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
6.
Proc Natl Acad Sci U S A ; 116(30): 15200-15209, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285337

RESUMEN

Although microorganisms are known to dominate Earth's biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.


Asunto(s)
Cicer/microbiología , Transferencia de Gen Horizontal , Genoma Bacteriano , Mesorhizobium/genética , Consorcios Microbianos/genética , Evolución Biológica , Conjugación Genética , Mesorhizobium/clasificación , Metagenómica/métodos , Fijación del Nitrógeno/fisiología , Filogenia , Filogeografía , Suelo/clasificación , Microbiología del Suelo , Simbiosis/genética
7.
Plant J ; 103(6): 2330-2343, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32530068

RESUMEN

The phenotypic analysis of root system growth is important to inform efforts to enhance plant resource acquisition from soils; however, root phenotyping remains challenging because of the opacity of soil, requiring systems that facilitate root system visibility and image acquisition. Previously reported systems require costly or bespoke materials not available in most countries, where breeders need tools to select varieties best adapted to local soils and field conditions. Here, we report an affordable soil-based growth (rhizobox) and imaging system to phenotype root development in glasshouses or shelters. All components of the system are made from locally available commodity components, facilitating the adoption of this affordable technology in low-income countries. The rhizobox is large enough (approximately 6000 cm2 of visible soil) to avoid restricting vertical root system growth for most if not all of the life cycle, yet light enough (approximately 21 kg when filled with soil) for routine handling. Support structures and an imaging station, with five cameras covering the whole soil surface, complement the rhizoboxes. Images are acquired via the Phenotiki sensor interface, collected, stitched and analysed. Root system architecture (RSA) parameters are quantified without intervention. The RSAs of a dicot species (Cicer arietinum, chickpea) and a monocot species (Hordeum vulgare, barley), exhibiting contrasting root systems, were analysed. Insights into root system dynamics during vegetative and reproductive stages of the chickpea life cycle were obtained. This affordable system is relevant for efforts in Ethiopia and other low- and middle-income countries to enhance crop yields and climate resilience sustainably.


Asunto(s)
Raíces de Plantas/anatomía & histología , Envejecimiento , Cicer/anatomía & histología , Cicer/genética , Genotipo , Hordeum/anatomía & histología , Hordeum/genética , Fenotipo , Suelo
8.
Arch Microbiol ; 203(5): 2129-2137, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33611634

RESUMEN

The main purpose of this study was to screen and select strains from seven Mesorhizobium spp. for efficient phosphate solubilizing and other plant growth-promoting traits. Mesorhizobium species were tested for their ability to dissolve inorganic phosphate sources and multiple plant growth-promoting attributes. From a total of 62 Mesorhizobium strains, 47(76%) strains formed clear zones with an average PSI of 1.9-2.7 on Pikovskaya's agar plate. The selected strains also released soluble phosphorus [125-150 P (µgml-1)] from tri-calcium phosphate and low level of phosphorous i.e., 15.4 µg/ml and 14.5 µg/ml from inorganic ferrous and aluminum phosphates, respectively, in a liquid medium after 4 days of incubation. The release of soluble P was significantly (P < 0.01) correlated with a drop in pH of the medium. Moreover, screening for multiple plant growth-promoting attributes showed that 40, 28, 26, 21, and 38% of the strains were capable of producing indole-3-acetic acid, hydrogen cyanide, siderophores, ACC deaminase, and antagonism against Fusarium oxysporum f.sp. ciceris under in vitro conditions. The Mesorhizobium strains were endowed with the presence of ACC deaminase which was rarely reported elsewhere. All taken together, the acidic soils harbor numerous and more diverse phosphate solubilizing and plant growth-promoting Mesorhizobium spp. However, greenhouse and field conditions can be further studied within the context of improving chickpea production in Ethiopia.


Asunto(s)
Cicer/microbiología , Mesorhizobium/metabolismo , Fosfatos/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Antibiosis , Liasas de Carbono-Carbono/metabolismo , Cicer/crecimiento & desarrollo , Etiopía , Fusarium/fisiología , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo , Suelo/química
9.
Virus Genes ; 55(3): 339-345, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30875007

RESUMEN

Maize (Zea mays L.) is host for more than 50 virus species worldwide with Maize streak virus (MSV) (genus Mastrevirus) causing significant yield losses in Africa. A survey for viruses infecting maize was conducted in major growing regions of Ethiopia. To test for DNA viruses, in particular mastreviruses, rolling circle amplification was performed for the analysis of virus composition in assayed samples. Following the analysis of the entire virus genomes, three genetic groups, each representing distinct virus species, were identified. The first group was almost identical with the A-strain of MSV. The next sequence-cluster shared 96-98% identity with isolates of Maize streak reunion virus (MSRV) confirming the presence of this virus also in continental East Africa. Sequence analysis of additional virus genomes (each 2846 nt) in length revealed only a limited 70-71% nt identity with MSRV isolates and an even lower identity (< 64%) with sequences of mastreviruses described elsewhere. Our analysis suggests a novel virus species, which is tentatively named maize streak dwarfing virus (MSDV). The pairwise comparison of capsid protein and replication-associated protein (Rep) of the novel species revealed a limited identity of 63% and 68% with the respective protein sequences of MSRV. The incidence of the virus species in the maize regions of Ethiopia was studied across 89 samples collected during four growing seasons. PCR analysis with general and specific mastrevirus primers showed that MSV is the most incident virus (39.3%) followed by MSRV (14.6%) and MSDV (12.4%). Identification of three different mastrevirus species in a confined geographical location on the same host, maize, is unprecedented, and suggests that Ethiopia may be one of the potential hot spots for diversity of maize-infecting mastreviruses.


Asunto(s)
Geminiviridae/genética , Variación Genética , Enfermedades de las Plantas/genética , Zea mays/virología , Etiopía , Geminiviridae/patogenicidad , Genoma Viral/genética , Filogenia , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN , Zea mays/genética
10.
Virus Genes ; 55(3): 346, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30963370

RESUMEN

The original version of this article unfortunately contained errors in the "Results" section.

11.
BMC Genet ; 19(1): 92, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30309314

RESUMEN

BACKGROUND: Plectranthus edulis (Vatke) Agnew (locally known as Ethiopian dinich or Ethiopian potato) is one of the most economically important edible tuber crops indigenous to Ethiopia. Evaluating the extent of genetic diversity within and among populations is one of the first and most important steps in breeding and conservation measures. Hence, this study was aimed at evaluating the genetic diversity and population structure of this crop using collections from diverse agro-ecologies in Ethiopia. RESULTS: Twenty polymorphic expressed sequence tag based simple sequence repeat (EST-SSRs) markers were developed for P. edulis based on EST sequences of P. barbatus deposited in the GenBank. These markers were used for genetic diversity analyses of 287 individual plants representing 12 populations, and a total of 128 alleles were identified across the entire loci and populations. Different parameters were used to estimate the genetic diversity within populations; and gene diversity index (GD) ranged from 0.31 to 0.39 with overall mean of 0.35. Hierarchical analysis of molecular variance (AMOVA) showed significant but low population differentiation with only 3% of the total variation accounted for variation among populations. Likewise, cluster and STRUCTURE analyses did not group the populations into sharply distinct clusters, which could be attributed to historical and contemporary gene flow and the reproductive biology of the crop. CONCLUSIONS: These newly developed EST-SSR markers are highly polymorphic within P. edulis and hence are valuable genetic tools that can be used to evaluate the extent of genetic diversity and population structure of not only P. edulis but also various other species within the Lamiaceae family. Among the 12 populations studied, populations collected from Wenbera, Awi and Wolaita showed a higher genetic diversity as compared to other populations, and hence these areas can be considered as hot spots for in-situ conservation as well as for identification of genotypes that can be used in breeding programs.


Asunto(s)
Variación Genética , Genética de Población , Plectranthus/genética , Alelos , Análisis por Conglomerados , ADN de Plantas/genética , ADN de Plantas/metabolismo , Etiopía , Etiquetas de Secuencia Expresada , Flujo Génico , Frecuencia de los Genes , Repeticiones de Microsatélite/genética , Hojas de la Planta/genética , Polimorfismo Genético , Análisis de Componente Principal
12.
Asian-Australas J Anim Sci ; 31(9): 1393-1400, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29642685

RESUMEN

OBJECTIVE: This study was carried out to assess the haplotype diversity and population dynamics in cattle populations of Ethiopia. METHODS: We sequenced the complete mitochondrial cytochrome b gene of 76 animals from five indigenous and one Holstein Friesian×Barka cross bred cattle populations. RESULTS: In the sequence analysis, 18 haplotypes were generated from 18 segregating sites and the average haplotype and nucleotide diversities were 0.7540±0.043 and 0.0010±0.000, respectively. The population differentiation analysis shows a weak population structure (4.55%) among the populations studied. Majority of the variation (95.45%) is observed by within populations. The overall average pair-wise distance (FST) was 0.049539 with the highest (FST = 0.1245) and the lowest (FST = 0.011) FST distances observed between Boran and Abigar, and Sheko and Abigar from the indigenous cattle, respectively. The phylogenetic network analysis revealed that all the haplotypes detected clustered together with the Bos taurus cattle and converged to a haplogroup. No haplotype in Ethiopian cattle was observed clustered with the reference Bos indicus group. The mismatch distribution analysis indicates a single population expansion event among the cattle populations. CONCLUSION: Overall, high haplotype variability was observed among Ethiopian cattle populations and they share a common ancestor with Bos taurus.

13.
Genes (Basel) ; 14(6)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37372335

RESUMEN

Ethiopia is considered a center of origin and diversity for durum wheat and is endowed with many diverse landraces. This research aimed to estimate the extent and pattern of genetic diversity in Ethiopian durum wheat germplasm. Thus, 104 durum wheat genotypes representing thirteen populations, three regions, and four altitudinal classes were investigated for their genetic diversity, using 10 grain quality- and grain yield-related phenotypic traits and 14 simple sequence repeat (SSR) makers. The analysis of the phenotypic traits revealed a high mean Shannon diversity index (H' = 0.78) among the genotypes and indicated a high level of phenotypic variation. The principal component analysis (PCA) classified the genotypes into three groups. The SSR markers showed a high mean value of polymorphic information content (PIC = 0.50) and gene diversity (h = 0.56), and a moderate number of alleles per locus (Na = 4). Analysis of molecular variance (AMOVA) revealed a high level of variation within populations, regions, and altitudinal classes, accounting for 88%, 97%, and 97% of the total variation, respectively. Pairwise genetic differentiation and Nei's genetic distance analyses identified that the cultivars are distinct from the landrace populations. The distance-based (Discriminant Analysis of Principal Component (DAPC) and Minimum Spanning Network (MSN)) and model-based population stratification (STRUCTURE) methods of clustering grouped the genotypes into two clusters. Both the phenotypic data-based PCA and the molecular data-based DAPC and MSN analyses defined distinct groupings of cultivars and landraces. The phenotypic and molecular diversity analyses highlighted the high genetic variation in the Ethiopian durum wheat gene pool. The investigated SSRs showed significant associations with one or more target phenotypic traits. The markers identify landraces with high grain yield and quality traits. This study highlights the usefulness of Ethiopian landraces for cultivar development, contributing to food security in the region and beyond.


Asunto(s)
Variación Genética , Triticum , Variación Genética/genética , Triticum/genética , Genotipo , Fenotipo , Repeticiones de Microsatélite/genética
14.
Heliyon ; 9(1): e12830, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36691551

RESUMEN

In the tropical and semi-arid regions of Africa, sorghum [Sorghum bicolor (L.) Moench] is mainly grown as a major food security crop. Understanding the extent and pattern of genetic variability is a prerequisite criterion for sorghum improvement and conservation. The genetic diversity and population structure of 100 genotypes of sorghum were profiled using 15 microsatellite loci. A total of 108 alleles, with an overall mean of 7.2 alleles per locus, were produced by all of the microsatellite loci used due to their high polymorphism. Polymorphic information content values ranging from 0.68 to 0.89 indicated that all of the loci are effective genetic tools for analysing the genetic structure of sorghum. Different diversity metrics were used to evaluate genetic diversity among populations, and Nei's gene diversity index ranged from 0.74 to 0.81 with an overall mean of 0.78. Poor genetic differentiation (FST: 0.02; p < 0.0001) was found, where 98% of entire variability was accounted by the within populations genetic variability, leaving only 2.32% among populations. The highest genetic differentiation and Nis's genetic distance were observed between the sorghum populations of the Southern Nation and Nationalities Peoples and Dire Dawa regions. Due to increased gene flow (Nm = 10.53), the clustering, principal coordinate analysis and STRUCTURE analysis failed to categorize the populations into genetically different groups corresponding to their geographic sampling areas. In general, it was found that the microsatellite loci were highly informative and therefore valuable genetic tools to unfold the genetic diversity and population structure of Ethiopian sorghum genotypes. Among the five populations studied, sorghum populations from Amhara and Oromia had the highest genetic variation, indicating that the regions could be perhaps hotspots for useful alleles for the development of better-performing genotypes, and also for designing appropriate germplasm management strategies.

15.
PLoS One ; 18(2): e0277499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724188

RESUMEN

Spatial variation and genotype by environment (GxE) interaction are common in varietal selection field trials and pose a significant challenge for plant breeders when comparing the genetic potential of different varieties. Efficient statistical methods must be employed for the evaluation of finger millet breeding trials to accurately select superior varieties that contribute to agricultural productivity. The objective of this study was to improve selection strategies in finger millet breeding in Ethiopia through modeling of spatial field trends and the GxE interaction. A dataset of seven multi-environment trials (MET) conducted in randomized complete block design (RCBD) with two replications laid out in rectangle (row x column) arrays of plots was used in this study. The results revealed that, under the linear mixed model, the spatial and factor analytic (FA) models were efficient methods of data analysis for this study, and this was demonstrated with evidence of heritability measure. We found two clusters of correlated environments that helped to select superior and stable varieties through ranking average Best Linear Unbiased Predictors (BLUPs) within clusters. The first cluster was chosen because it contained a greater number of environments with high heritability. Based on this cluster, Bako-09, 203439, 203325, and 203347 were the top four varieties with relatively high yield performance and stability across correlated environments. Hence, scaling up the use of this efficient analysis method will improve the selection of superior finger millet varieties.


Asunto(s)
Eleusine , Eleusine/genética , Etiopía , Genotipo , Modelos Estadísticos , Fitomejoramiento
17.
Front Plant Sci ; 14: 1192356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546270

RESUMEN

Yanyang Liu, Henan Academy of Agricultural Sciences (HNAAS), China; Landraces are an important genetic source for transferring valuable novel genes and alleles required to enhance genetic variation. Therefore, information on the gene pool's genetic diversity and population structure is essential for the conservation and sustainable use of durum wheat genetic resources. Hence, the aim of this study was to assess genetic diversity, population structure, and linkage disequilibrium, as well as to identify regions with selection signature. Five hundred (500) individuals representing 46 landraces, along with 28 cultivars were evaluated using the Illumina Infinium 25K wheat SNP array, resulting in 8,178 SNPs for further analysis. Gene diversity (GD) and the polymorphic information content (PIC) ranged from 0.13-0.50 and 0.12-0.38, with mean GD and PIC values of 0.34 and 0.27, respectively. Linkage disequilibrium (LD) revealed 353,600 pairs of significant SNPs at a cut-off (r2 > 0.20, P < 0.01), with an average r2 of 0.21 for marker pairs. The nucleotide diversity (π) and Tajima's D (TD) per chromosome for the populations ranged from 0.29-0.36 and 3.46-5.06, respectively, with genome level, mean π values of 0.33 and TD values of 4.43. Genomic scan using the Fst outlier test revealed 85 loci under selection signatures, with 65 loci under balancing selection and 17 under directional selection. Putative candidate genes co-localized with regions exhibiting strong selection signatures were associated with grain yield, plant height, host plant resistance to pathogens, heading date, grain quality, and phenolic content. The Bayesian Model (STRUCTURE) and distance-based (principal coordinate analysis, PCoA, and unweighted pair group method with arithmetic mean, UPGMA) methods grouped the genotypes into five subpopulations, where landraces from geographically non-adjoining environments were clustered in the same cluster. This research provides further insights into population structure and genetic relationships in a diverse set of durum wheat germplasm, which could be further used in wheat breeding programs to address production challenges sustainably.

18.
Front Plant Sci ; 14: 1256770, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130484

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a severe disease in wheat worldwide, including Ethiopia, causing up to 100% wheat yield loss in the worst season. The use of resistant cultivars is considered to be the most effective and durable management technique for controlling the disease. Therefore, the present study targeted the genetic architecture of adult plant resistance to yellow rust in 178 wheat association panels. The panel was phenotyped for yellow rust adult-plant resistance at three locations. Phonological, yield, yield-related, and agro-morphological traits were recorded. The association panel was fingerprinted using the genotyping-by-sequencing (GBS) platform, and a total of 6,788 polymorphic single nucleotide polymorphisms (SNPs) were used for genome-wide association analysis to identify effective yellow rust resistance genes. The marker-trait association analysis was conducted using the Genome Association and Prediction Integrated Tool (GAPIT). The broad-sense heritability for the considered traits ranged from 74.52% to 88.64%, implying the presence of promising yellow rust resistance alleles in the association panel that could be deployed to improve wheat resistance to the disease. The overall linkage disequilibrium (LD) declined within an average physical distance of 31.44 Mbp at r2 = 0.2. Marker-trait association (MTA) analysis identified 148 loci significantly (p = 0.001) associated with yellow rust adult-plant resistance. Most of the detected resistance quantitative trait loci (QTLs) were located on the same chromosomes as previously reported QTLs for yellow rust resistance and mapped on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6A, 6B, 7A, and 7D. However, 12 of the discovered MTAs were not previously documented in the wheat literature, suggesting that they could represent novel loci for stripe rust resistance. Zooming into the QTL regions in IWGSC RefSeq Annotation v1 identified crucial disease resistance-associated genes that are key in plants' defense mechanisms against pathogen infections. The detected QTLs will be helpful for marker-assisted breeding of wheat to increase resistance to stripe rust. Generally, the present study identified putative QTLs for field resistance to yellow rust and some important agronomic traits. Most of the discovered QTLs have been reported previously, indicating the potential to improve wheat resistance to yellow rust by deploying the QTLs discovered by marker-assisted selection.

19.
Nat Commun ; 14(1): 3694, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344528

RESUMEN

Finger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21st century, here we present the assembly and annotation of a chromosome-scale reference genome. We show that this ~1.3 million years old allotetraploid has a high level of homoeologous gene retention and lacks subgenome dominance. Population structure is mainly driven by the differential presence of large wild segments in the pericentromeric regions of several chromosomes. Trait mapping, followed by variant analysis of gene candidates, reveals that loss of purple coloration of anthers and stigma is associated with loss-of-function mutations in the finger millet orthologs of the maize R1/B1 and Arabidopsis GL3/EGL3 anthocyanin regulatory genes. Proanthocyanidin production in seed is not affected by these gene knockouts.


Asunto(s)
Eleusine , Humanos , Lactante , Eleusine/genética , Fitomejoramiento , Genoma de Planta/genética , Fenotipo , África Oriental
20.
Front Plant Sci ; 13: 882136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646044

RESUMEN

Genomic resources and tools are essential for improving crops and conserving their genetic resources. Guizotia abyssinica (noug), an outcrossing edible oilseed crop, has highly limited genomic resources. Hence, RNA-Seq based transcriptome sequencing of 30 noug genotypes was performed to generate novel genomic resources and assess their usefulness. The genotypes include self-compatible and self-incompatible types, which differ in maturity time, photoperiod sensitivity, or oil content and quality. RNA-Seq was performed on Illumina HiSeq 2500 platform, and the transcript was reconstructed de novo, resulting in 409,309 unigenes. The unigenes were characterized for simple sequence repeats (SSRs), and served as a reference for single nucleotide polymorphism (SNP) calling. In total, 40,776 SSRs were identified in 35,639 of the 409,309 unigenes. Of these, mono, di, tri, tetra, penta and hexanucleotide repeats accounted for 55.4, 20.8, 21.1, 2.3, 0.2, and 0.2%, respectively. The average G+C content of the unigenes and their SSRs were 40 and 22.1%, respectively. The vast majority of mononucleotide repeat SSRs (97%) were of the A/T type. AG/CT and CCA/TGG were the most frequent di and trinucleotide repeat SSRs. A different number of single nucleotide polymorphism (SNP) loci were discovered in each genotype, of which 1,687 were common to all 30 genotypes and 5,531 to 28 of them. The mean observed heterozygosity of the 5,531 SNPs was 0.22; 19.4% of them had polymorphism information content above 0.30 while 17.2% deviated significantly from Hardy-Weinberg equilibrium (P < 0.05). In both cluster and principal coordinate analyses, the genotypes were grouped into four major clusters. In terms of population structure, the genotypes are best represented by three genetic populations, with significant admixture within each. Genetic similarity between self-compatible genotypes was higher, due to the narrow genetic basis, than that between self-incompatible genotypes. The genotypes that shared desirable characteristics, such as early maturity, and high oil content were found to be genetically diverse, and hence superior cultivars with multiple desirable traits can be developed through crossbreeding. The genomic resources developed in this study are vital for advancing research in noug, such as genetic linkage mapping and genome-wide association studies, which could lead to genomic-led breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA