Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 42(3): 580-90, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25786180

RESUMEN

Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity.


Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Complemento C1q/metabolismo , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Merozoítos/inmunología , Parasitemia/prevención & control , Plasmodium falciparum/inmunología , Adolescente , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Niño , Preescolar , Pruebas de Fijación del Complemento , Vía Clásica del Complemento , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inmunoglobulina G/biosíntesis , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Proteína 1 de Superficie de Merozoito/antagonistas & inhibidores , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/inmunología , Parasitemia/inmunología , Parasitemia/parasitología , Estudios Prospectivos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
2.
BMC Health Serv Res ; 24(1): 180, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331762

RESUMEN

BACKGROUND: Improving screening and triage practices is essential for early severity assessments at the first point of contact and ensuring timely attention by healthcare workers (HCWs). The main objective of this study was to explore the triage process among febrile patients and HCWs in the emergency department (ED) of a tertiary care hospital in a resource-constrained setting. METHODS: This qualitative study was conducted from March to May 2023 at the ED of Tribhuvan University Teaching Hospital (TUTH), Nepal. The study included in-depth interviews with febrile patients (n = 15) and HCWs (n = 15). Additionally, direct observation notes (n = 20) were collected to document the triage process and patients' experiences in the ED. Data underwent thematic analysis using the Interpretative Phenomenological Analysis (IPA) approach. RESULTS: The ED of TUTH offered comprehensive triage services with clear delineation for the severity of febrile patients in line with the World Health Organization (WHO) guidelines. Nonetheless, challenges and constraints were identified. In the ED, evenings were generally the busiest period, and the triage process was not thorough during night shifts. Perception of triage was limited among patients and variable among HCWs. Digitalizing recordings of patient information including payment was deemed necessary for effective management of patients' waiting times at the triage station. High patient throughput added pressure on HCWs and had a potential influence on the delivery of services. Availability of medical equipment and space were also identified as challenges, with patients sometimes compelled to share beds. There were constraints related to waste disposal, hygiene, cleanliness, and the availability and maintenance of washrooms. Febrile patients experienced delays in receiving timely consultations and laboratory investigation reports, which affected their rapid diagnosis and discharge; nonetheless, patients were satisfied with the overall healthcare services received in the ED. CONCLUSIONS: Improving current triage management requires resource organization, including optimizing the waiting time of patients through a digitalized system. Urgent priorities involve upgrading visitor facilities, patient consultations, laboratory investigations, hygiene, and sanitation. HCWs' recommendations to resource the ED with more equipment, space, and beds and a dedicated triage officer to ensure 24-hour service, together with training and incentives, warrant further attention.


Asunto(s)
Servicios Médicos de Urgencia , Triaje , Humanos , Centros de Atención Terciaria , Nepal , Atención a la Salud , Servicio de Urgencia en Hospital , Personal de Salud , Hospitales Universitarios
3.
BMC Med ; 20(1): 396, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376866

RESUMEN

BACKGROUND: Low-density Plasmodium falciparum infections prevail in low transmission settings, where immunity is expected to be minimal, suggesting an immune-independent effect on parasite densities. We aimed to describe parasite densities in pregnancy, and determine how gravidity and antibody-mediated immunity affect these, during a period of declining malaria transmission in southern Mozambique. METHODS: We documented P. falciparum infections at first antenatal care visits (n = 6471) between November 2016 and October 2019 in Ilha Josina (high-to-moderate transmission area), Manhiça (low transmission area), and Magude (pre-elimination area). Two-way interactions in mixed-effects regression models were used to assess gravidity-dependent differences in quantitative PCR-determined P. falciparum positivity rates (PfPRqPCR) and densities, in the relative proportion of detectable infections (pDi) with current diagnostic tests (≥ 100 parasites/µL) and in antimalarial antibodies. RESULTS: PfPRqPCR declined from 28 to 13% in Ilha Josina and from 5-7 to 2% in Magude and Manhiça. In primigravidae, pDi was highest in Ilha Josina at the first study year (p = 0.048), which declined with falling PfPRqPCR (relative change/year: 0.41, 95% CI [0.08; 0.73], p = 0.029), with no differences in antibody levels. Higher parasite densities in primigravidae from Ilha Josina during the first year were accompanied by a larger reduction of maternal hemoglobin levels (- 1.60, 95% CI [- 2.49; - 0.72; p < 0.001), than in Magude (- 0.76, 95% CI [- 1.51; - 0.01]; p = 0.047) and Manhiça (- 0.44, 95% CI [- 0.99; 0.10; p = 0.112). In contrast, multigravidae during the transmission peak in Ilha Josina carried the lowest pDi (p = 0.049). As PfPRqPCR declined, geometric mean of parasite densities increased (4.63, 95% CI [1.28; 16.82], p = 0.020), and antibody levels declined among secundigravidae from Ilha Josina. CONCLUSIONS: The proportion of detectable and clinically relevant infections is the highest in primigravid women from high-to-moderate transmission settings and decreases with declining malaria. In contrast, the falling malaria trends are accompanied by increased parasite densities and reduced humoral immunity among secundigravidae. Factors other than acquired immunity thus emerge as potentially important for producing less detectable infections among primigravidae during marked declines in malaria transmission.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Femenino , Embarazo , Número de Embarazos , Plasmodium falciparum , Estudios Prospectivos , Malaria Falciparum/tratamiento farmacológico , Antimaláricos/uso terapéutico , Prevalencia
4.
Clin Infect Dis ; 70(12): 2544-2552, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31402382

RESUMEN

BACKGROUND: We assessed the impact of exposure to Plasmodium falciparum on parasite kinetics, clinical symptoms, and functional immunity after controlled human malaria infection (CHMI) in 2 cohorts with different levels of previous malarial exposure. METHODS: Nine adult males with high (sero-high) and 10 with low (sero-low) previous exposure received 3200 P. falciparum sporozoites (PfSPZ) of PfSPZ Challenge by direct venous inoculation and were followed for 35 days for parasitemia by thick blood smear (TBS) and quantitative polymerase chain reaction. Endpoints were time to parasitemia, adverse events, and immune responses. RESULTS: Ten of 10 (100%) volunteers in the sero-low and 7 of 9 (77.8%) in the sero-high group developed parasitemia detected by TBS in the first 28 days (P = .125). The median time to parasitemia was significantly shorter in the sero-low group than the sero-high group (9 days [interquartile range {IQR} 7.5-11.0] vs 11.0 days [IQR 7.5-18.0], respectively; log-rank test, P = .005). Antibody recognition of sporozoites was significantly higher in the sero-high (median, 17.93 [IQR 12.95-24] arbitrary units [AU]) than the sero-low volunteers (median, 10.54 [IQR, 8.36-12.12] AU) (P = .006). Growth inhibitory activity was significantly higher in the sero-high (median, 21.8% [IQR, 8.15%-29.65%]) than in the sero-low group (median, 8.3% [IQR, 5.6%-10.23%]) (P = .025). CONCLUSIONS: CHMI was safe and well tolerated in this population. Individuals with serological evidence of higher malaria exposure were able to better control infection and had higher parasite growth inhibitory activity. CLINICAL TRIALS REGISTRATION: NCT03496454.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Adulto , Animales , Humanos , Cinética , Masculino , Plasmodium falciparum
5.
BMC Med ; 18(1): 304, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32972398

RESUMEN

BACKGROUND: As malaria transmission declines, sensitive diagnostics are needed to evaluate interventions and monitor transmission. Serological assays measuring malaria antibody responses offer a cost-effective detection method to supplement existing surveillance tools. METHODS: A prospective cohort study was conducted from 2013 to 2015 in 12 villages across five administrative regions in The Gambia. Serological analysis included samples from the West Coast Region at the start and end of the season (July and December 2013) and from the Upper River Region in July and December 2013 and April and December 2014. Antigen-specific antibody responses to eight Plasmodium falciparum (P. falciparum) antigens-Etramp5.Ag1, GEXP18, HSP40.Ag1, Rh2.2030, EBA175 RIII-V, PfMSP119, PfAMA1, and PfGLURP.R2-were quantified using a multiplexed bead-based assay. The association between antibody responses and clinical and parasitological endpoints was estimated at the individual, household, and population level. RESULTS: Strong associations were observed between clinical malaria and concurrent sero-positivity to Etramp5.Ag1 (aOR 4.60 95% CI 2.98-7.12), PfMSP119 (aOR 4.09 95% CI 2.60-6.44), PfAMA1 (aOR 2.32 95% CI 1.40-3.85), and PfGLURP.R2 (aOR 3.12, 95% CI 2.92-4.95), while asymptomatic infection was associated with sero-positivity to all antigens. Village-level sero-prevalence amongst children 2-10 years against Etramp5.Ag1, HSP40.Ag1, and PfMSP119 showed the highest correlations with clinical and P. falciparum infection incidence rates. For all antigens, there were increased odds of asymptomatic P. falciparum infection in subjects residing in a compound with greater than 50% sero-prevalence, with a 2- to 3-fold increase in odds of infection associated with Etramp5.Ag1, GEXP18, Rh2.2030, PfMSP119, and PfAMA1. For individuals residing in sero-positive compounds, the odds of clinical malaria were reduced, suggesting a protective effect. CONCLUSIONS: At low transmission, long-lived antibody responses could indicate foci of malaria transmission that have been ongoing for several seasons or years. In settings where sub-patent infections are prevalent and fluctuate below the detection limit of polymerase chain reaction (PCR), the presence of short-lived antibodies may indicate recent infectivity, particularly in the dry season when clinical cases are rare. Serological responses may reflect a persistent reservoir of infection, warranting community-targeted interventions if individuals are not clinically apparent but have the potential to transmit. Therefore, serological surveillance at the individual and household level may be used to target interventions where there are foci of asymptomatically infected individuals, such as by measuring the magnitude of age-stratified antibody levels or identifying areas with clustering of above-average antibody responses across a diverse range of serological markers.


Asunto(s)
Formación de Anticuerpos/inmunología , Malaria Vivax/epidemiología , Estudios Seroepidemiológicos , Adolescente , Niño , Preescolar , Femenino , Gambia , Humanos , Masculino , Prevalencia , Estudios Prospectivos , Estaciones del Año
6.
BMC Med ; 18(1): 331, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33183292

RESUMEN

BACKGROUND: As The Gambia aims to achieve malaria elimination by 2030, serological assays are a useful surveillance tool to monitor trends in malaria incidence and evaluate community-based interventions. METHODS: Within a mass drug administration (MDA) study in The Gambia, where reduced malaria infection and clinical disease were observed after the intervention, a serological sub-study was conducted in four study villages. Spatio-temporal variation in transmission was measured with a panel of recombinant Pf antigens on a multiplexed bead-based assay. Village-level antibody levels were quantified as under-15 sero-prevalence, sero-conversion rates, and age-adjusted antibody acquisition rates. Antibody levels prior to MDA were assessed for association with persistent malaria infection after community chemoprophylaxis. RESULTS: Seasonal changes in antibodies to Etramp5.Ag1 were observed in children under 15 years in two transmission settings-the West Coast and Upper River Regions (4.32% and 31.30% Pf prevalence, respectively). At the end of the malaria season, short-lived antibody responses to Etramp5.Ag1, GEXP18, HSP40.Ag1, EBA175 RIII-V, and Rh2.2030 were lower amongst 1-15 year olds in the West Coast compared to the Upper River, reflecting known differences in transmission. Prior to MDA, individuals in the top 50th percentile of antibody levels had two-fold higher odds of clinical malaria during the transmission season, consistent with previous findings from the Malaria Transmission Dynamics Study, where individuals infected before the implementation of MDA had two-fold higher odds of re-infection post-MDA. CONCLUSIONS: Serological markers can serve dual functions as indicators of malaria exposure and incidence. By monitoring age-specific sero-prevalence, the magnitude of age-stratified antibody levels, or identifying groups of individuals with above-average antibody responses, these antigens have the potential to complement conventional malaria surveillance tools. Further studies, particularly cluster randomised trials, can help establish standardised serological protocols to reliably measure transmission across endemic settings.


Asunto(s)
Malaria/epidemiología , Administración Masiva de Medicamentos/métodos , Plasmodium falciparum/patogenicidad , Adolescente , Niño , Preescolar , Femenino , Gambia , Humanos , Incidencia , Masculino , Prevalencia , Estudios Prospectivos
7.
BMC Med ; 18(1): 9, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31987052

RESUMEN

BACKGROUND: In order to improve malaria burden estimates in low transmission settings, more sensitive tools and efficient sampling strategies are required. This study evaluated the use of serological measures from repeated health facility-based cross-sectional surveys to investigate Plasmodium falciparum and Plasmodium vivax transmission dynamics in an area nearing elimination in Indonesia. METHODS: Quarterly surveys were conducted in eight public health facilities in Kulon Progo District, Indonesia, from May 2017 to April 2018. Demographic data were collected from all clinic patients and their companions, with household coordinates collected using participatory mapping methods. In addition to standard microscopy tests, bead-based serological assays were performed on finger-prick bloodspot samples from 9453 people. Seroconversion rates (SCR, i.e. the proportion of people in the population who are expected to seroconvert per year) were estimated by fitting a simple reversible catalytic model to seroprevalence data. Mixed effects logistic regression was used to examine factors associated with malaria exposure, and spatial analysis was performed to identify areas with clustering of high antibody responses. RESULTS: Parasite prevalence by microscopy was extremely low (0.06% (95% confidence interval 0.03-0.14, n = 6) and 0 for P. vivax and P. falciparum, respectively). However, spatial analysis of P. vivax antibody responses identified high-risk areas that were subsequently the site of a P. vivax outbreak in August 2017 (62 cases detected through passive and reactive detection systems). These areas overlapped with P. falciparum high-risk areas and were detected in each survey. General low transmission was confirmed by the SCR estimated from a pool of the four surveys in people aged 15 years old and under (0.020 (95% confidence interval 0.017-0.024) and 0.005 (95% confidence interval 0.003-0.008) for P. vivax and P. falciparum, respectively). The SCR estimates in those over 15 years old were 0.066 (95% confidence interval 0.041-0.105) and 0.032 (95% confidence interval 0.015-0.069) for P. vivax and P. falciparum, respectively. CONCLUSIONS: These findings demonstrate the potential use of health facility-based serological surveillance to better identify and target areas still receptive to malaria in an elimination setting. Further implementation research is needed to enable integration of these methods with existing surveillance systems.


Asunto(s)
Brotes de Enfermedades , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Estudios Seroepidemiológicos , Adulto , Análisis por Conglomerados , Estudios Transversales , Pruebas Diagnósticas de Rutina , Femenino , Instituciones de Salud , Humanos , Indonesia/epidemiología , Modelos Logísticos , Malaria/epidemiología , Masculino , Microscopía , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , Prevalencia , Análisis Espacial
8.
PLoS Med ; 15(7): e1002606, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30016328

RESUMEN

BACKGROUND: Intermittent preventive treatment of malaria in pregnancy (IPTp) with dihydroartemisinin-piperaquine (IPTp-DP) has been shown to reduce the burden of malaria during pregnancy compared to sulfadoxine-pyrimethamine (IPTp-SP). However, limited data exist on how IPTp regimens impact malaria risk during infancy. We conducted a double-blinded randomized controlled trial (RCT) to test the hypothesis that children born to mothers given IPTp-DP would have a lower incidence of malaria during infancy compared to children born to mothers who received IPTp-SP. METHODS AND FINDINGS: We compared malaria metrics among children in Tororo, Uganda, born to women randomized to IPTp-SP given every 8 weeks (SP8w, n = 100), IPTp-DP every 8 weeks (DP8w, n = 44), or IPTp-DP every 4 weeks (DP4w, n = 47). After birth, children were given chemoprevention with DP every 12 weeks from 8 weeks to 2 years of age. The primary outcome was incidence of malaria during the first 2 years of life. Secondary outcomes included time to malaria from birth and time to parasitemia following each dose of DP given during infancy. Results are reported after adjustment for clustering (twin gestation) and potential confounders (maternal age, gravidity, and maternal parasitemia status at enrolment).The study took place between June 2014 and May 2017. Compared to children whose mothers were randomized to IPTp-SP8w (0.24 episodes per person year [PPY]), the incidence of malaria was higher in children born to mothers who received IPTp-DP4w (0.42 episodes PPY, adjusted incidence rate ratio [aIRR] 1.92; 95% CI 1.00-3.65, p = 0.049) and nonsignificantly higher in children born to mothers who received IPT-DP8w (0.30 episodes PPY, aIRR 1.44; 95% CI 0.68-3.05, p = 0.34). However, these associations were modified by infant sex. Female children whose mothers were randomized to IPTp-DP4w had an apparently 4-fold higher incidence of malaria compared to female children whose mothers were randomized to IPTp-SP8w (0.65 versus 0.20 episodes PPY, aIRR 4.39, 95% CI 1.87-10.3, p = 0.001), but no significant association was observed in male children (0.20 versus 0.28 episodes PPY, aIRR 0.66, 95% CI 0.25-1.75, p = 0.42). Nonsignificant increases in malaria incidence were observed among female, but not male, children born to mothers who received DP8w versus SP8w. In exploratory analyses, levels of malaria-specific antibodies in cord blood were similar between IPTp groups and sex. However, female children whose mothers were randomized to IPTp-DP4w had lower mean piperaquine (PQ) levels during infancy compared to female children whose mothers received IPTp-SP8w (coef 0.81, 95% CI 0.65-1.00, p = 0.048) and male children whose mothers received IPTp-DP4w (coef 0.72, 95% CI 0.57-0.91, p = 0.006). There were no significant sex-specific differences in PQ levels among children whose mothers were randomized to IPTp-SP8w or IPTp-DP8w. The main limitations were small sample size and childhood provision of DP every 12 weeks in infancy. CONCLUSIONS: Contrary to our hypothesis, preventing malaria in pregnancy with IPTp-DP in the context of chemoprevention with DP during infancy does not lead to a reduced incidence of malaria in childhood; in this setting, it may be associated with an increased incidence of malaria in females. Future studies are needed to better understand the biological mechanisms of in utero drug exposure on drug metabolism and how this may affect the dosing of antimalarial drugs for treatment and prevention during infancy. TRIAL REGISTRATION: ClinicalTrials.gov number NCT02163447.


Asunto(s)
Antimaláricos/administración & dosificación , Artemisininas/administración & dosificación , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Malaria Falciparum/prevención & control , Complicaciones Parasitarias del Embarazo/prevención & control , Pirimetamina/administración & dosificación , Quinolinas/administración & dosificación , Sulfadoxina/administración & dosificación , Adolescente , Adulto , Antimaláricos/efectos adversos , Artemisininas/efectos adversos , Preescolar , Método Doble Ciego , Esquema de Medicación , Combinación de Medicamentos , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Embarazo , Complicaciones Parasitarias del Embarazo/epidemiología , Complicaciones Parasitarias del Embarazo/parasitología , Pirimetamina/efectos adversos , Quinolinas/efectos adversos , Sulfadoxina/efectos adversos , Factores de Tiempo , Resultado del Tratamiento , Uganda/epidemiología , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 112(32): E4438-47, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216993

RESUMEN

Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.


Asunto(s)
Biomarcadores/sangre , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Características de la Residencia , Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Antígenos de Protozoos/inmunología , Niño , Preescolar , Femenino , Ontología de Genes , Geografía , Humanos , Incidencia , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Masculino , Malí/epidemiología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Curva ROC , Resultado del Tratamiento , Uganda/epidemiología
10.
Malar J ; 16(1): 99, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28253867

RESUMEN

BACKGROUND: The widespread presence of low-density asymptomatic infections with concurrent gametocytes may be a stumbling block for malaria elimination. This study investigated the asymptomatic reservoir of Plasmodium falciparum and Plasmodium vivax infections in schoolchildren from five settings in northwest Ethiopia. METHODS: Two cross-sectional surveys were conducted in June and November 2015, enrolling 551 students from five schools and 294 students from three schools, respectively. Finger prick whole blood and plasma samples were collected. The prevalence and density of P. falciparum and P. vivax parasitaemia and gametocytaemia were determined by 18S rRNA quantitative PCR (qPCR) and pfs25 and pvs25 reverse transcriptase qPCR. Antibodies against blood stage antigens apical membrane antigen-1 (AMA-1) and merozoite surface protein-1 (MSP-119) were measured for both species. RESULTS: Whilst only 6 infections were detected by microscopy in 881 slides (0.7%), 107 of 845 blood samples (12.7%) were parasite positive by (DNA-based) qPCR. qPCR parasite prevalence between sites and surveys ranged from 3.8 to 19.0% for P. falciparum and 0.0 to 9.0% for P. vivax. The median density of P. falciparum infections (n = 85) was 24.4 parasites/µL (IQR 18.0-34.0) and the median density of P. vivax infections (n = 28) was 16.4 parasites/µL (IQR 8.8-55.1). Gametocyte densities by (mRNA-based) qRT-PCR were strongly associated with total parasite densities for both P. falciparum (correlation coefficient = 0.83, p = 0.010) and P. vivax (correlation coefficient = 0.58, p = 0.010). Antibody titers against P. falciparum AMA-1 and MSP-119 were higher in individuals who were P. falciparum parasite positive in both surveys (p < 0.001 for both comparisons). DISCUSSION: This study adds to the available evidence on the wide-scale presence of submicroscopic parasitaemia by quantifying submicroscopic parasite densities and concurrent gametocyte densities. There was considerable heterogeneity in the occurrence of P. falciparum and P. vivax infections and serological markers of parasite exposure between the examined low endemic settings in Ethiopia.


Asunto(s)
Enfermedades Endémicas/estadística & datos numéricos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Parasitemia/epidemiología , Adolescente , Infecciones Asintomáticas/epidemiología , Niño , Estudios Transversales , Etiopía/epidemiología , Femenino , Humanos , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Masculino , Parasitemia/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Prevalencia , ARN Ribosómico 18S/genética
11.
Malar J ; 16(1): 67, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28183299

RESUMEN

BACKGROUND: People living in malaria endemic areas acquire protection from severe malaria quickly, but protection from clinical disease and control of parasitaemia is acquired only after many years of repeated infections. Antibodies play a central role in protection from clinical disease; however, protective antibodies are slow to develop. This study sought to investigate the influence of Plasmodium falciparum exposure on the acquisition of high-avidity antibodies to P. falciparum antigens, which may be associated with protection. METHODS: Cross-sectional surveys were performed in children and adults at three sites in Uganda with varied P. falciparum transmission intensity (entomological inoculation rates; 3.8, 26.6, and 125 infectious bites per person per year). Sandwich ELISA was used to measure antibody responses to two P. falciparum merozoite surface antigens: merozoite surface protein 1-19 (MSP1-19) and apical membrane antigen 1 (AMA1). In individuals with detectable antibody levels, guanidine hydrochloride (GuHCl) was added to measure the relative avidity of antibody responses by ELISA. RESULTS: Within a site, there were no significant differences in median antibody levels between the three age groups. Between sites, median antibody levels were generally higher in the higher transmission sites, with differences more apparent for AMA-1 and in ≥5 year group. Similarly, median avidity index (proportion of high avidity antibodies) showed no significant increase with increasing age but was significantly lower at sites of higher transmission amongst participants ≥5 years of age. Using 5 M GuHCl, the median avidity indices in the ≥5 year group at the highest and lowest transmission sites were 19.9 and 26.8, respectively (p = 0.0002) for MSP1-19 and 12.2 and 17.2 (p = 0.0007) for AMA1. CONCLUSION: Avidity to two different P. falciparum antigens was lower in areas of high transmission intensity compared to areas with lower transmission. Appreciation of the mechanisms behind these findings as well as their clinical consequences will require additional investigation, ideally utilizing longitudinal data and investigation of a broader array of responses.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Afinidad de Anticuerpos , Malaria Falciparum/inmunología , Malaria Falciparum/transmisión , Plasmodium falciparum/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Masculino , Merozoítos/inmunología , Persona de Mediana Edad , Uganda/epidemiología , Adulto Joven
12.
Malar J ; 16(1): 242, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28595603

RESUMEN

BACKGROUND: Since 2005, Ethiopia has aggressively scaled up malaria prevention and case management. As a result, the number of malaria cases and deaths has significantly declined. In order to track progress towards the elimination of malaria in Amhara Region, coverage of malaria control tools and current malaria transmission need to be documented. METHODS: A cross-sectional household survey oversampling children under 5 years of age was conducted during the dry season in 2013. A bivalent rapid diagnostic test (RDT) detecting both Plasmodium falciparum and Plasmodium vivax and serology assays using merozoite antigens from both these species were used to assess the prevalence of malaria infections and exposure to malaria parasites in 16 woredas (districts) in Amhara Region. RESULTS: 7878 participants were included, with a mean age of 16.8 years (range 0.5-102.8 years) and 42.0% being children under 5 years of age. The age-adjusted RDT-positivity for P. falciparum and P. vivax infection was 1.5 and 0.4%, respectively, of which 0.05% presented as co-infections. Overall age-adjusted seroprevalence was 30.0% for P. falciparum, 21.8% for P. vivax, and seroprevalence for any malaria species was 39.4%. The prevalence of RDT-positive infections varied by woreda, ranging from 0.0 to 8.3% and by altitude with rates of 3.2, 0.7, and 0.4% at under 2000, 2000-2500, and >2500 m, respectively. Serological analysis showed heterogeneity in transmission intensity by area and altitude and evidence for a change in the force of infection in the mid-2000s. CONCLUSIONS: Current and historic malaria transmission across Amhara Region show substantial variation by age and altitude with some settings showing very low or near-zero transmission. Plasmodium vivax infections appear to be lower but relatively more stable across geography and altitude, while P. falciparum is the dominant infection in the higher transmission, low-altitude areas. Age-dependent seroprevalence analyses indicates a drop in transmission occurred in the mid-2000s, coinciding with malaria control scale-up efforts. As malaria parasitaemia rates get very low with elimination efforts, serological evaluation may help track progress to elimination.


Asunto(s)
Malaria/epidemiología , Plasmodium/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Protozoos/sangre , Niño , Preescolar , Coinfección/epidemiología , Coinfección/parasitología , Estudios Transversales , Etiopía/epidemiología , Femenino , Humanos , Lactante , Malaria/parasitología , Masculino , Merozoítos/aislamiento & purificación , Persona de Mediana Edad , Parasitemia/epidemiología , Parasitemia/parasitología , Prevalencia , Adulto Joven
13.
Malar J ; 15(1): 261, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27154310

RESUMEN

BACKGROUND: Plasmodium falciparum merozoite antigens elicit antibody responses in malaria-endemic populations, some of which are clinically protective, which is one of the reasons why merozoite antigens are the focus of malaria vaccine development efforts. Polymorphisms in several merozoite antigen-encoding genes are thought to arise as a result of selection by the human immune system. METHODS: The allele frequency distribution of 15 merozoite antigens over a two-year period, 2007 and 2008, was examined in parasites obtained from children with uncomplicated malaria. In the same population, allele frequency changes pre- and post-anti-malarial treatment were also examined. Any gene which showed a significant shift in allele frequencies was also assessed longitudinally in asymptomatic and complicated malaria infections. RESULTS: Fluctuating allele frequencies were identified in codons 147 and 148 of reticulocyte-binding homologue (Rh) 5, with a shift from HD to YH haplotypes over the two-year period in uncomplicated malaria infections. However, in both the asymptomatic and complicated malaria infections YH was the dominant and stable haplotype over the two-year and ten-year periods, respectively. A logistic regression analysis of all three malaria infection populations between 2007 and 2009 revealed, that the chance of being infected with the HD haplotype decreased with time from 2007 to 2009 and increased in the uncomplicated and asymptomatic infections. CONCLUSION: Rh5 codons 147 and 148 showed heterogeneity at both an individual and population level and may be under some degree of immune selection.


Asunto(s)
Antígenos de Protozoos/genética , Frecuencia de los Genes , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Merozoítos , Plasmodium falciparum/genética , Polimorfismo Genético , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Kenia , Estudios Longitudinales , Masculino , Plasmodium falciparum/aislamiento & purificación , Análisis de Secuencia de ADN
14.
Antimicrob Agents Chemother ; 59(3): 1770-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534732

RESUMEN

The mechanisms of drug resistance development in the Plasmodium falciparum parasite to lumefantrine (LUM), commonly used in combination with artemisinin, are still unclear. We assessed the polymorphisms of Pfmspdbl2 for associations with LUM activity in a Kenyan population. MSPDBL2 codon 591S was associated with reduced susceptibility to LUM (P = 0.04). The high frequency of Pfmspdbl2 codon 591S in Kenya may be driven by the widespread use of lumefantrine in artemisinin combination therapy (Coartem).


Asunto(s)
Codón/genética , Resistencia a Medicamentos/genética , Etanolaminas/farmacología , Fluorenos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Polimorfismo Genético/genética , Proteínas Protozoarias/genética , Antimaláricos/farmacología , Combinación Arteméter y Lumefantrina , Artemisininas/farmacología , Combinación de Medicamentos , Humanos , Kenia , Lumefantrina , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/patología
15.
PLoS Genet ; 8(11): e1002992, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133397

RESUMEN

Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study.


Asunto(s)
Antígenos de Protozoos , Malaria , Plasmodium falciparum , Selección Genética/genética , Inmunidad Adaptativa , Antígenos , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Eritrocitos/inmunología , Gambia , Genética de Población , Genoma , Humanos , Malaria/genética , Malaria/inmunología , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
16.
mBio ; 15(5): e0314023, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38530030

RESUMEN

The Plasmodium falciparum merozoite surface protein MSPDBL2 is a polymorphic antigen targeted by acquired immune responses, and normally expressed in only a minority of mature schizonts. The potential relationship of MSPDBL2 to sexual commitment is examined, as variable mspdbl2 transcript levels and proportions of MSPDBL2-positive mature schizonts in clinical isolates have previously correlated with levels of many sexual stage parasite gene transcripts, although not with the master regulator ap2-g. It is demonstrated that conditional overexpression of the gametocyte development protein GDV1, which promotes sexual commitment, also substantially increases the proportion of MSPDBL2-positive schizonts in culture. Conversely, truncation of the gdv1 gene is shown to prevent any expression of MSPDBL2. However, across diverse P. falciparum cultured lines, the variable proportions of MSPDBL2 positivity in schizonts do not correlate significantly with variable gametocyte conversion rates, indicating it is not involved in sexual commitment. Confirming this, examining a line with endogenous hemagglutinin-tagged AP2-G showed that the individual schizonts expressing MSPDBL2 are mostly different from those expressing AP2-G. Using a selection-linked integration system, modified P. falciparum lines were engineered to express an intact or disrupted version of MSPDBL2, showing the protein is not required for sexual commitment or early gametocyte development. Asexual parasite multiplication rates were also not affected by expression of either intact or disrupted MSPDBL2 in a majority of schizonts. Occurring alongside sexual commitment, the role of the discrete MSPDBL2-positive schizont subpopulation requires further investigation in natural infections where it is under immune selection. IMPORTANCE: Malaria parasites in the blood are remarkably variable, able to switch antigenic targets so they may survive within humans who have already developed specific immune responses. This is one of the challenges in developing vaccines against malaria. MSPDBL2 is a target of naturally acquired immunity expressed in minority proportions of schizonts, the end stages of each 2-day replication cycle in red blood cells which contain merozoites prepared to invade new red blood cells. Results show that the proportion of schizonts expressing MSPDBL2 is positively controlled by the expression of the regulatory gametocyte development protein GDV1. It was previously known that expression of GDV1 leads to increased expression of AP2-G which causes parasites to switch to sexual development, so a surprising finding here is that MSPDBL2-positive parasites are mostly distinct from those that express AP2-G. This discrete antigenic subpopulation of mostly asexual parasites is regulated alongside sexually committed parasites, potentially enabling survival under stress conditions.


Asunto(s)
Antígenos de Protozoos , Plasmodium falciparum , Proteínas Protozoarias , Esquizontes , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Esquizontes/metabolismo , Esquizontes/inmunología , Esquizontes/genética , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/inmunología , Regulación de la Expresión Génica , Eritrocitos/parasitología
17.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158220

RESUMEN

The malaria parasite Plasmodium vivax remains a major global public health challenge, and no vaccine is approved for use in humans. Here, we assessed whether P. vivax strain-transcendent immunity can be achieved by repeated infection in Aotus monkeys. Sterile immunity was achieved after two homologous infections, whereas subsequent heterologous challenge provided only partial protection. IgG levels based on P. vivax lysate ELISA and protein microarray increased with repeated infections and correlated with the level of homologous protection. Parasite transcriptional profiles provided no evidence of major antigenic switching upon homologous or heterologous challenge. However, we observed significant sequence diversity and transcriptional differences in the P. vivax core gene repertoire between the two strains used in the study, suggesting that partial protection upon heterologous challenge is due to molecular differences between strains rather than immune evasion by antigenic switching. Our study demonstrates that sterile immunity against P. vivax can be achieved by repeated homologous blood stage infection in Aotus monkeys, thus providing a benchmark to test the efficacy of candidate blood stage P. vivax malaria vaccines.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Malaria , Animales , Humanos , Malaria Vivax/prevención & control , Malaria Vivax/parasitología , Aotidae , Haplorrinos
18.
medRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712121

RESUMEN

Introduction: Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a non-comatose, fatal case of severe knowlesi infection, but the potential impact of this malaria species on the brain remains underexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. Methods: Archived plasma samples from 19 patients with confirmed symptomatic knowlesi infection and 19 healthy, age-matched controls from Peninsular Malaysia were analysed. A total of 52 plasma biomarkers of brain injury, inflammation, and vascular activation were measured using Luminex and SIMOA assays. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. Results: Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (p<0.0001), Tau (p=0.0007), UCH-L1 (p<0.0001), αSyn (p<0.0001), Park7 (p=0.0006), NRGN (p=0.0022), and TDP-43 (p=0.005). Compared to controls, levels were lower in the infected group for BDNF (p<0.0001), CaBD (p<0.0001), CNTN1 (p<0.0001), NCAM-1 (p<0.0001), GFAP (p=0.0013), and KLK6 (p=0.0126). Hierarchical clustering revealed distinct group profiles for circulating levels of brain injury and vascular activation biomarkers. Conclusions: Our findings highlight for the first time the impact of Plasmodium knowlesi infection on the brain, with distinct alterations in cerebral injury and endothelial activation biomarker profiles compared to healthy controls. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered surrogate markers, through both neuroimaging and long-term neurocognitive assessments.

19.
J Infect ; 88(5): 106144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574776

RESUMEN

OBJECTIVE: The effectiveness of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is threatened by increasing SP-resistance in Africa. We assessed the level of SP-resistance markers, and the clinical and parasitological effectiveness of IPTp-SP in southern Mozambique. METHODS: P. falciparum infection, antimalarial antibodies and dhfr/dhps SP-resistance mutants were detected by quantitative polymerase chain reaction (qPCR), suspension array technology and targeted deep sequencing, respectively, among 4016 HIV-negative women in Maputo province (2016-2019). Univariate and multivariate regression models were used to assess the association between taking the recommended three or more IPTp-SP doses (IPTp3+) and parasitological and clinical outcomes. RESULTS: 84.3% (3385/4016) women received three or more IPTp-SP doses. The prevalence of quintuple mutants at first antenatal care (ANC) visit was 94.2%. IPTp3+ was associated with a higher clearance rate of qPCR-detected infections from first ANC visit to delivery (adjusted odds ratio [aOR]=5.9, 95% CI: 1.5-33.3; p = 0.012), lower seroprevalence at delivery of antibodies against the pregnancy-specific antigen VAR2CSADBL34 (aOR=0.72, 95% CI: 0.54-0.95; p = 0.022), and lower prevalence of low birth weight deliveries (aOR: 0.61, 95% CI: 0.41-0.90; p = 0.013). CONCLUSION: A sustained parasitological effect of IPTp-SP contributes to the clinical effectiveness of IPTp3+ in areas with high prevalence of SP-resistance markers.


Asunto(s)
Antimaláricos , Combinación de Medicamentos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Humanos , Femenino , Sulfadoxina/uso terapéutico , Sulfadoxina/administración & dosificación , Pirimetamina/uso terapéutico , Pirimetamina/administración & dosificación , Embarazo , Antimaláricos/uso terapéutico , Adulto , Malaria Falciparum/prevención & control , Malaria Falciparum/epidemiología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Mozambique/epidemiología , Adulto Joven , Complicaciones Parasitarias del Embarazo/prevención & control , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Adolescente , Quimioprevención/métodos
20.
Sci Rep ; 14(1): 2806, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307878

RESUMEN

Despite progress towards malaria reduction in Peru, measuring exposure in low transmission areas is crucial for achieving elimination. This study focuses on two very low transmission areas in Loreto (Peruvian Amazon) and aims to determine the relationship between malaria exposure and proximity to health facilities. Individual data was collected from 38 villages in Indiana and Belen, including geo-referenced households and blood samples for microscopy, PCR and serological analysis. A segmented linear regression model identified significant changes in seropositivity trends among different age groups. Local Getis-Ord Gi* statistic revealed clusters of households with high (hotspots) or low (coldspots) seropositivity rates. Findings from 4000 individuals showed a seropositivity level of 2.5% (95%CI: 2.0%-3.0%) for P. falciparum and 7.8% (95%CI: 7.0%-8.7%) for P. vivax, indicating recent or historical exposure. The segmented regression showed exposure reductions in the 40-50 age group (ß1 = 0.043, p = 0.003) for P. vivax and the 50-60 age group (ß1 = 0.005, p = 0.010) for P. falciparum. Long and extreme distance villages from Regional Hospital of Loreto exhibited higher malaria exposure compared to proximate and medium distance villages (p < 0.001). This study showed the seropositivity of malaria in two very low transmission areas and confirmed the spatial pattern of hotspots as villages become more distant.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Perú/epidemiología , Plasmodium falciparum , Plasmodium vivax , Estudios Seroepidemiológicos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA