Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(11): e23264, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37850915

RESUMEN

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by its main symptom, visceral hypersensitivity (VH), which is aggravated by stress. Gut-brain interactions and gut bacteria may alleviate IBS symptoms, including VH. γ-amino butyric acid (GABA), produced notably by lactic acid bacteria (LAB), shows promising result in IBS symptoms treatment. In bacteria, GABA is generated through glutamate decarboxylase (GAD) metabolism of L-glutamic acid, maintaining intracellular pH. In mammals, GABA acts as an inhibitory neurotransmitter, modulating pain, stress, and anxiety. Therefore, utilizing GABA-producing LAB as a therapeutic approach might be beneficial. Our previous work showed that a GABA-producing Lactococcus lactis strain, NCDO2118, reduced VH induced by acute stress in rats after a 10-day oral treatment. Here, we identified the strain CNCM I-5388, with a four-fold higher GABA production rate under the same conditions as NCDO2118. Both strains shared 99.1% identical GAD amino acid sequences and in vitro analyses revealed the same optimal pH for GAD activity; however, CNCM I-5388 exhibited 17 times higher intracellular GAD activity and increased resistance to acidic pH. Additionally, in vivo experiments have demonstrated that CNCM I-5388 has faster anti-VH properties in rats compared with NCDO2118, starting from the fifth day of treatment. Finally, CNCM I-5388 anti-VH effects partially persisted after 5-day treatment interruption and after a single oral treatment. These findings highlight CNCM I-5388 as a potential therapeutic agent for managing VH in IBS patients.


Asunto(s)
Síndrome del Colon Irritable , Lactobacillales , Lactococcus lactis , Humanos , Ratas , Animales , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Secuencia de Aminoácidos , Mamíferos
2.
Cell Mol Life Sci ; 78(24): 8157-8164, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34731253

RESUMEN

This study aims to remind that Intestinal Passage (IP) measurement is a complex task that cannot be achieved by a unique measure of an orally given exogenous marker in blood or urine. This will be illustrated in the case of NOD mice. Indeed, various methods have been proposed to measure IP. Among them ex vivo measurement in Ussing chambers of luminal to serosal fluxes of exogenous markers and in vivo measurement of exogenous markers in blood or urine after oral gavage are the more commonly used. Even though they are commonly used indifferently, they do not give the same information and can provide contradictory results. Published data showed that diabetic status in female Non Obese Diabetic (NOD) mice increased FD4 concentration in blood after gavage but did not modify FD4 fluxes in Ussing chamber. We observed the same results in our experimental conditions and tracked FD4 concentrations in blood over a kinetic study (Area Under the Curve-AUC). In vivo measurements are a dynamic process and address not only absorption (IP and intestinal surface) but also distribution, metabolism and excretion (ADME). Diabetic status in NOD mice was associated with an increase of intestinal length (absorptive surface), itself positively correlated with AUC of FD4 in blood. We concluded that increased intestinal length induced by diabetic status will extend the absorptive surface and increase FD4 concentration in plasma (in vivo measurement) despite no modification on IP of FD4 (ex vivo measurement). In addition, this study characterized intestinal function in diabetic NOD mice. Diabetic status in NOD female mice increases intestinal length and decreases paracellular IP (FSS) without affecting transcellular IP (HRP, FD4). Histological studies of small and large intestine did not show any modification of intestinal circumference nor villi and crypt size. Finally, diabetic status was not associated with intestinal inflammation (ELISA).


Asunto(s)
Permeabilidad de la Membrana Celular , Dextranos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Epiteliales/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Absorción Intestinal , Mucosa Intestinal/metabolismo , Animales , Transporte Biológico , Diabetes Mellitus Experimental/patología , Femenino , Fluoresceína-5-Isotiocianato/metabolismo , Ratones , Ratones Endogámicos NOD
3.
Gastroenterology ; 158(3): 652-663.e6, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31711923

RESUMEN

BACKGROUND & AIMS: Irritable bowel syndrome (IBS) is characterized by abdominal pain, bloating, and erratic bowel habits. A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) can reduce symptoms of IBS, possibly by reducing microbial fermentation products. We investigated whether ingestion of FODMAPs can induce IBS-like visceral hypersensitivity mediated by fermentation products of intestinal microbes in mice. METHODS: C57Bl/6 mice were gavaged with lactose, with or without the antiglycation agent pyridoxamine, or saline (controls) daily for 3 weeks. A separate group of mice were fed a diet containing fructo-oligosaccharides, with or without pyridoxamine in drinking water, or a normal chow diet (controls) for 6 weeks. Feces were collected and analyzed by 16S ribosomal RNA gene sequencing and bacterial community analyses. Abdominal sensitivity was measured by electromyography and mechanical von Frey filament assays. Colon tissues were collected from some mice and analyzed by histology and immunofluorescence to quantify mast cells and expression of advanced glycosylation end-product specific receptor (AGER). RESULTS: Mice gavaged with lactose or fed fructo-oligosaccharides had increased abdominal sensitivity compared with controls, associated with increased numbers of mast cells in colon and expression of the receptor for AGER in proximal colon epithelium. These effects were prevented by administration of pyridoxamine. Lactose and/or pyridoxamine did not induce significant alterations in the composition of the fecal microbiota. Mass spectrometric analysis of carbonyl compounds in fecal samples identified signatures associated with mice given lactose or fructo-oligosaccharides vs controls. CONCLUSIONS: We found that oral administration of lactose or fructo-oligosaccharides to mice increases abdominal sensitivity, associated with increased numbers of mast cells in colon and expression of AGER; these can be prevented with an antiglycation agent. Lactose and/or pyridoxamine did not produce alterations in fecal microbiota of mice. Our findings indicate that preventing glycation reactions might reduce abdominal pain in patients with IBS with sensitivity to FODMAPs.


Asunto(s)
Colon/patología , Mucosa Intestinal/patología , Síndrome del Colon Irritable/patología , Lactosa/administración & dosificación , Oligosacáridos/administración & dosificación , Músculos Oblicuos del Abdomen/fisiopatología , Animales , Colon/metabolismo , Dieta , Modelos Animales de Enfermedad , Electromiografía , Heces/microbiología , Fermentación , Tránsito Gastrointestinal , Hiperalgesia/inducido químicamente , Mucosa Intestinal/metabolismo , Síndrome del Colon Irritable/metabolismo , Lactosa/metabolismo , Masculino , Mastocitos , Ratones , Ratones Endogámicos C57BL , Oligosacáridos/metabolismo , Piridoxamina/farmacología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Complejo Vitamínico B/farmacología
4.
Eur J Nutr ; 60(4): 1887-1896, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32889607

RESUMEN

PURPOSE: Red and processed meats are recognized by the International Agency for Research on Cancer as probably carcinogenic and carcinogenic to humans, respectively. Heme iron has been proposed as a central factor responsible for this effect. Furthermore, anxiety affects the intestinal barrier function by increasing intestinal permeability. The objective of this work was to assess how anxiety modifies the association between red and processed meat consumption and cancer risk in the NutriNet-Santé prospective cohort (2009-2019). METHODS: Using multi-adjusted Cox models in a sample of 101,269 subjects, we studied the associations between the consumption of red and processed meat, the amount of heme iron coming from these meats and overall, colorectal, prostate, and breast cancer risks, overall and separately among participants with and without anxiety. RESULTS: An increase in red and processed meat consumption was associated with an increased risk of developing colorectal cancer in the total population (HR for an increase of 50 g/day = 1.18 (1.01-1.37), p = 0.03). After stratification on anxiety, the HR 50 g/day was 1.42 (1.03-1.94, p = 0.03) in anxious participants and 1.12 (0.94-1.33, p = 0.20) in other participants. Similar trends were observed for overall cancer risk. Analyses conducted with heme iron also provided similar results. CONCLUSIONS: Our results strengthen the existing body of evidence supporting that red and processed meat consumption and heme iron intake are associated with an increased risk of overall and more specifically colorectal cancer, and suggest that anxiety modifies these associations, with an increased risk in anxious participants.


Asunto(s)
Neoplasias de la Mama , Productos de la Carne , Carne Roja , Ansiedad/epidemiología , Ansiedad/etiología , Estudios de Cohortes , Dieta/efectos adversos , Femenino , Humanos , Masculino , Carne , Estudios Prospectivos , Factores de Riesgo
5.
Part Fibre Toxicol ; 17(1): 26, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527323

RESUMEN

BACKGROUND: Food-grade TiO2 (E171 in the EU) is widely used as a coloring agent in foodstuffs, including sweets. Chronic dietary exposure raises concerns for human health due to proinflammatory properties and the ability to induce and promote preneoplastic lesions in the rodent gut. Characterization of intestinal TiO2 uptake is essential for assessing the health risk in humans. We studied in vivo the gut absorption kinetics of TiO2 in fasted mice orally given a single dose (40 mg/kg) to assess the ability of intestinal apical surfaces to absorb particles when available without entrapment in the bolus. The epithelial translocation pathways were also identified ex vivo using intestinal loops in anesthetized mice. RESULTS: The absorption of TiO2 particles was analyzed in gut tissues by laser-reflective confocal microscopy and ICP-MS at 4 and 8 h following oral administration. A bimodal pattern was detected in the small intestine: TiO2 absorption peaked at 4 h in jejunal and ileal villi before returning to basal levels at 8 h, while being undetectable at 4 h but significantly present at 8 h in the jejunal Peyer's patches (PP). Lower absorption occurred in the colon, while TiO2 particles were clearly detectable by confocal microscopy in the blood at 4 and 8 h after treatment. Ex vivo, jejunal loops were exposed to the food additive in the presence and absence of pharmacological inhibitors of paracellular tight junction (TJ) permeability or of transcellular (endocytic) passage. Thirty minutes after E171 addition, TiO2 absorption by the jejunal villi was decreased by 66% (p < 0.001 vs. control) in the presence of the paracellular permeability blocker triaminopyrimidine; the other inhibitors had no significant effect. Substantial absorption through a goblet cell (GC)-associated pathway, insensitive to TJ blockade, was also detected. CONCLUSIONS: After a single E171 dose in mice, early intestinal uptake of TiO2 particles mainly occurred through the villi of the small intestine, which, in contrast to the PP, represent the main absorption surface in the small intestine. A GC-associated passage and passive diffusion through paracellular TJ spaces between enterocytes appeared to be major absorption routes for transepithelial uptake of dietary TiO2.


Asunto(s)
Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Microvellosidades/metabolismo , Nanopartículas/administración & dosificación , Uniones Estrechas/metabolismo , Titanio/farmacocinética , Animales , Transporte Biológico , Exposición Dietética , Absorción Intestinal , Ratones Endogámicos C57BL , Tamaño de la Partícula , Permeabilidad , Distribución Tisular , Titanio/administración & dosificación
6.
Arch Toxicol ; 94(9): 3173-3184, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32617661

RESUMEN

The incidence of inflammatory bowel diseases (IBD) is increasing in both Western and developing countries. IBD are multifactorial disorders involving complex interactions between genetic, immune, and environmental factors such as exposure to food contaminants. Deoxynivalenol (DON) is the most prevalent mycotoxin that contaminates staple food and induces intestinal breakdown and inflammatory response. To delineate the role of DON oral exposure in IBD, we used a Dextran sulfate sodium (DSS) colitis model in rats fed with a DON-contaminated diet or a control diet for 4 weeks. Colitis was induced in the 4th week by increasing concentrations of DSS in the drinking water (0, 2, 3 or 5%). DON exacerbated body weight loss and accelerated the appearance of symptoms in animals treated with DSS. DON increased morphological damage, pro-inflammatory markers (myeloperoxidase, CXCL-1 and IL-1ß) and immune cell responses. In lamina propria of the rat with colitis, DON increased adaptive and innate immune responses after anti-CD3/28 or LPS stimulation, respectively. In the spleen, DON increased IFNγ secretion and reduced Treg populations. Interestingly, De-epoxy-DON (DOM-1) a detoxified form of DON did not have any consequences on colitis. These results suggest that DON is a risk factor in the onset of IBD.


Asunto(s)
Contaminación de Alimentos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Micotoxinas/toxicidad , Linfocitos T Reguladores/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Colitis , Sulfato de Dextran , Dieta , Modelos Animales de Enfermedad , Intestinos , Masculino , Ratas
7.
Glycoconj J ; 36(1): 39-55, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30637506

RESUMEN

Lactobacillus farciminis CIP 103136 is a bacterial strain with recognized probiotic properties. However, the mechanisms underlying such properties have only been partially elucidated. In this study, we isolated and purified a cell-wall associated polysaccharide (CWPS), and evaluated its biological role in vitro. The structure of CWPS and responses from stimulation of (i) human macrophage-like THP-1 cells, (ii) human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR2 or TLR4) and (iii) human colonocyte-like T84 intestinal epithelial cells, upon exposure to CWPS were studied. The structure of the purified CWPS from L. farciminis CIP 103136 was analyzed by nuclear magnetic resonance (NMR), MALDI-TOF-TOF MS, and methylation analyses in its native form and following Smith degradation. It was shown to be a novel branched polysaccharide, composed of linear backbone of trisaccharide repeating units of: [→6αGlcpNAc1 → 4ßManpNAc1 → 4ßGlcpNAc1→] highly substituted with single residues of αGlcp, αGalp and αGlcpNAc. Subsequently, the lack of pro- or anti-inflammatory properties of CWPS was established on macrophage-like THP-1 cells. In addition, CWPS failed to modulate cell signaling pathways dependent of TLR2 and TLR4 in transfected HEK-cells. Finally, in T84 cells, CWPS neither influenced intestinal barrier integrity under basal conditions nor prevented TNF-α/IFN-γ cytokine-mediated epithelium impairment.


Asunto(s)
Pared Celular/química , Lactobacillus/química , Polisacáridos Bacterianos/química , Probióticos/química , Pared Celular/ultraestructura , Citocinas/metabolismo , Células HEK293 , Hexosaminas/análisis , Humanos , Polisacáridos Bacterianos/inmunología , Polisacáridos Bacterianos/farmacología , Transducción de Señal/inmunología , Receptores Toll-Like/metabolismo
8.
Brain Behav Immun ; 80: 452-463, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30981713

RESUMEN

Early life stress is known to impair intestinal barrier through induction of intestinal hyperpermeability, low-grade inflammation and microbiota dysbiosis in young adult rodents. Interestingly, those features are also observed in metabolic disorders (obesity and type 2 diabetes) that appear with ageing. Based on the concept of Developmental Origins of Health and Diseases, our study aimed to investigate whether early life stress can trigger metabolic disorders in ageing mice. Maternal separation (MS) is a well-established model of early life stress in rodent. In this study, MS increased fasted blood glycemia, induced glucose intolerance and decreased insulin sensitivity in post-natal day 350 wild type C3H/HeN male mice fed a standard diet without affecting body weight. MS also triggered fecal dysbiosis favoring pathobionts and significantly decreased IL-17 and IL-22 secretion in response to anti-CD3/CD28 stimulation in small intestine lamina propria. Finally, IL-17 secretion in response to anti-CD3/CD28 stimulation was also diminished at systemic level (spleen). For the first time, we demonstrate that early life stress is a risk factor for metabolic disorders development in ageing wild type mice under normal diet.


Asunto(s)
Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Estrés Psicológico/fisiopatología , Animales , Diabetes Mellitus Tipo 2/complicaciones , Disbiosis/metabolismo , Femenino , Microbioma Gastrointestinal/fisiología , Intolerancia a la Glucosa/fisiopatología , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Intestinos/microbiología , Masculino , Privación Materna , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Microbiota/fisiología , Obesidad/metabolismo
9.
Gastroenterology ; 153(6): 1594-1606.e2, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28865734

RESUMEN

BACKGROUND & AIMS: Separation of newborn rats from their mothers induces visceral hypersensitivity and impaired epithelial secretory cell lineages when they are adults. Little is known about the mechanisms by which maternal separation causes visceral hypersensitivity or its relationship with defects in epithelial secretory cell lineages. METHODS: We performed studies with C3H/HeN mice separated from their mothers as newborns and mice genetically engineered (Sox9flox/flox-vil-cre on C57BL/6 background) to have deficiencies in Paneth cells. Paneth cell deficiency was assessed by lysozyme staining of ileum tissues and lysozyme activity in fecal samples. When mice were 50 days old, their abdominal response to colorectal distension was assessed by electromyography. Fecal samples were collected and microbiota were analyzed using Gut Low-Density Array quantitative polymerase chain reaction. RESULTS: Mice with maternal separation developed visceral hypersensitivity and defects in Paneth cells, as reported from rats, compared with mice without maternal separation. Sox9flox/flox-vil-Cre mice also had increased visceral hypersensitivity compared with control littermate Sox9flox/flox mice. Fecal samples from mice with maternal separation and from Sox9flox/flox-vil-cre mice had evidence for intestinal dysbiosis of the microbiota, characterized by expansion of Escherichia coli. Daily gavage of conventional C3H/HeN adult mice with 109 commensal E coli induced visceral hypersensitivity. Conversely, daily oral administration of lysozyme prevented expansion of E coli during maternal separation and visceral hypersensitivity. CONCLUSIONS: Mice with defects in Paneth cells (induced by maternal separation or genetically engineered) have intestinal expansion of E coli leading to visceral hypersensitivity. These findings provide evidence that Paneth cell function and intestinal dysbiosis are involved in visceral sensitivity.


Asunto(s)
Ansiedad de Separación/complicaciones , Escherichia coli/crecimiento & desarrollo , Microbioma Gastrointestinal , Hiperalgesia/etiología , Células de Paneth/microbiología , Dolor Visceral/etiología , Factores de Edad , Animales , Animales Recién Nacidos , Ansiedad de Separación/metabolismo , Ansiedad de Separación/microbiología , Ansiedad de Separación/fisiopatología , Modelos Animales de Enfermedad , Disbiosis , Heces/microbiología , Femenino , Predisposición Genética a la Enfermedad , Hiperalgesia/metabolismo , Hiperalgesia/microbiología , Hiperalgesia/fisiopatología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Muramidasa/administración & dosificación , Muramidasa/metabolismo , Células de Paneth/metabolismo , Fenotipo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Dolor Visceral/metabolismo , Dolor Visceral/microbiología , Dolor Visceral/fisiopatología
10.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G171-G193, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27908847

RESUMEN

The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.


Asunto(s)
Enfermedades Gastrointestinales/fisiopatología , Tracto Gastrointestinal/fisiología , Homeostasis/fisiología , Microbiota/fisiología , Animales , Enfermedades Gastrointestinales/microbiología , Tracto Gastrointestinal/microbiología , Humanos
11.
Artículo en Inglés | MEDLINE | ID: mdl-28636450

RESUMEN

There is an increasing awareness of the deleterious effects attributed to mycotoxins during their fate within the gut, particularly for deoxynivalenol (DON), zearalenone (ZEN), ochratoxin A (OTA), fumonisin B1 (FB1), aflatoxin B1 (AFB1), and patulin (PAT). Evidence indicates that disruption of the epithelial barrier is well established. However, intestinal barrier function on its luminal side involves two other partners, mucus and microbiota, which have rarely been considered in the context of mycotoxin exposure. The current review aimed at providing a summary of DON, ZEN, OTA, FB1, AFB1, and PAT effects on intestinal barrier function, with special focus on mucus and microbiota. DON, ZEN, OTA, FB1, AFB1, and PAT are known to markedly affect epithelial cell integrity and functions. Regarding mucus, DON is the most documentated mycotoxin. In vivo, toxicological impact of DON generally has only been assessed through goblet cell number. Evaluation of the mycotoxins/mucus interplay considering other indicators such as composition, thickness, and penetrability of mucus, mucin O-glycosylation thus warrants further attention. With respect to microbiota, few short-term studies to date have been reported indicating deleterious effects. However, long-term exposure to mycotoxins may also produce significant changes in microbiota composition and metabolic activity, which requires further experimentation. In conclusion, mucus and microbiota are key targets for dietary mycotoxins although assessment of induced effects is preliminary. A significant research effort is now underway to determine the adverse consequences of mycotoxins on mucus and microbiota considered as individual but also as tightly connected gut players.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Micotoxinas/efectos adversos , Aflatoxina B1/efectos adversos , Animales , Fumonisinas/efectos adversos , Humanos , Mucosa Intestinal/microbiología , Intestinos/microbiología , Ocratoxinas/efectos adversos , Patulina/efectos adversos , Tricotecenos/efectos adversos , Zearalenona/efectos adversos
12.
Br J Cancer ; 114(7): 787-92, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26908323

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the leading malignancies worldwide, therefore cheap noninvasive screening methods are of great importance. Matrix-metalloproteinase-9 (MMP-9) has a role in the progression of CRC, and its level is elevated in tumour biopsies. Faecal MMP-9 levels are increased in active ulcerative colitis patients, but in CRC patients, they have never been measured. We aimed to assess the faecal MMP-9 levels in patients undergoing total colonoscopy according to endoscopic and histological diagnosis. METHODS: One hundred and nine patients provided faecal samples for MMP-9 analysis. A total colonoscopy was performed; suspicious lesions were evaluated by histology. Faecal MMP-9 levels were measured by ELISA. RESULTS: The number of patients allocated to different groups were: negative/diverticulosis: 34 (referred to as controls); hyperplastic polyps: 15; adenomas: 32 (22 at high risk); and CRC: 28. Faecal MMP-9 was significantly increased in CRC compared with all other groups (P<0.001). Faecal MMP-9 was suitable to distinguish CRC patients from controls (sensitivity: 89.3%; specificity: 91.2%). By means of a lower cutoff level, faecal MMP-9 identified high-risk adenomas besides CRC (sensitivity: 76%; specificity: 85.3%). This lower cutoff level screened 59% of high-risk adenomas. CONCLUSIONS: Faecal MMP-9 may be a promising new noninvasive marker in CRC.


Asunto(s)
Adenoma/diagnóstico , Neoplasias Colorrectales/diagnóstico , Heces/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Adenoma/enzimología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Colonoscopía , Neoplasias Colorrectales/enzimología , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Proyectos Piloto , Pronóstico , Curva ROC
13.
Proc Natl Acad Sci U S A ; 110(22): 8795-800, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23671078

RESUMEN

Mycobacterium tuberculosis mannose-capped lipoarabinomannan inhibits the release of proinflammatory cytokines by LPS-stimulated human dendritic cells (DCs) via targeting the C-type lectin receptor DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN). With the aim of mimicking the bioactive supramolecular structure of mannose-capped lipoarabinomannan, we designed and synthesized a set of poly(phosphorhydrazone) dendrimers grafted with mannose units, called mannodendrimers, that differed by size and the number and length of their (α1→2)-oligommanoside caps. A third-generation dendrimer bearing 48 trimannoside caps (3T) and a fourth-generation dendrimer bearing 96 dimannosides (4D) displayed the highest binding avidity for DC-SIGN. Moreover, these dendrimers inhibited proinflammatory cytokines, including TNF-α, production by LPS-stimulated DCs in a DC-SIGN-dependent fashion. Finally, in a model of acute lung inflammation in which mice were exposed to aerosolized LPS, per os administration of 3T mannodendrimer was found to significantly reduce neutrophil influx via targeting the DC-SIGN murine homolog SIGN-related 1. The 3T mannodendrimer therefore represents an innovative fully synthetic compound for the treatment of lung inflammatory diseases.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Dendrímeros/farmacología , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Manósidos/farmacología , Neumonía/tratamiento farmacológico , Receptores de Superficie Celular/metabolismo , Animales , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Dendrímeros/química , Citometría de Flujo , Humanos , Lipopolisacáridos/química , Espectroscopía de Resonancia Magnética , Manósidos/química , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Neumonía/patología , Unión Proteica
14.
Infect Immun ; 83(6): 2420-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25824839

RESUMEN

The intestinal barrier controls the balance between tolerance and immunity to luminal antigens. When this finely tuned equilibrium is deregulated, inflammatory disorders can occur. There is a concomitant increase, in urban populations of developed countries, of immune-mediated diseases along with a shift in Escherichia coli population from the declining phylogenetic group A to the newly dominant group B2, including commensal strains producing a genotoxin called colibactin that massively colonized the gut of neonates. Here, we showed that mother-to-offspring early gut colonization by colibactin-producing E. coli impairs intestinal permeability and enhances the transepithelial passage of luminal antigen, leading to an increased immune activation. Functionally, this was accompanied by a dramatic increase in local and systemic immune responses against a fed antigen, decreased regulatory T cell population, tolerogenic dendritic cells, and enhanced mucosal delayed-type hypersensitivity response. Conversely, the abolition of colibactin expression by mutagenesis abrogates the alteration of oral tolerance induced by neonatal colonization by E. coli. In conclusion, the vertical colonization by E. coli producing the genotoxin colibactin enhances intestinal translocation and subsequently alters oral tolerance. Thus, early colonization by E. coli from the newly dominant phylogenetic group B2, which produces colibactin, may represent a risk factor for the development of immune-mediated diseases.


Asunto(s)
Escherichia coli/metabolismo , Tracto Gastrointestinal/microbiología , Péptidos/metabolismo , Policétidos/metabolismo , Animales , Animales Recién Nacidos , Portador Sano , Femenino , Embarazo , Ratas , Ratas Wistar
15.
BMC Microbiol ; 15: 67, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25888448

RESUMEN

BACKGROUND: The human gut houses one of the most complex and abundant ecosystems composed of up to 10(13)-10(14) microorganisms. The importance of this intestinal microbiota is highlighted when a disruption of the intestinal ecosystem equilibrium appears (a phenomenon called dysbiosis) leading to an illness status, such as inflammatory bowel diseases (IBD). Indeed, the reduction of the commensal bacterium Faecalibacterium prausnitzii (one of the most prevalent intestinal bacterial species in healthy adults) has been correlated with several diseases, including IBD, and most importantly, it has been shown that this bacterium has anti-inflammatory and protective effects in pre-clinical models of colitis. Some dysbiosis disorders are characterized by functional and physiological alterations. Here, we report the beneficial effects of F. prausnitzii in the physiological changes induced by a chronic low-grade inflammation in a murine model. Chronic low-grade inflammation and gut dysfunction were induced in mice by two episodes of dinitro-benzene sulfonic acid (DNBS) instillations. Markers of inflammation, gut permeability, colonic serotonin and cytokine levels were studied. The effects of F. prausnitzii strain A2-165 and its culture supernatant (SN) were then investigated. RESULTS: No significant differences were observed in classical inflammation markers confirming that inflammation was subclinical. However, gut permeability, colonic serotonin levels and the colonic levels of the cytokines IL-6, INF-γ, IL-4 and IL-22 were higher in DNBS-treated than in untreated mice. Importantly, mice treated with either F. prausnitzii or its SN exhibited significant decreases in intestinal permeability, tissue cytokines and serotonin levels. CONCLUSIONS: Our results show that F. prausnitzii and its SN had beneficial effects on intestinal epithelial barrier impairment in a chronic low-grade inflammation model. These observations confirm the potential of this bacterium as a novel probiotic treatment in the management of gut dysfunction and low-grade inflammation.


Asunto(s)
Clostridiales/inmunología , Enteritis/patología , Enteritis/prevención & control , Animales , Bencenosulfonatos/toxicidad , Colon/patología , Citocinas/análisis , Modelos Animales de Enfermedad , Enteritis/inducido químicamente , Ratones , Permeabilidad , Serotonina/análisis
16.
FASEB J ; 28(11): 4893-900, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25085925

RESUMEN

The food contaminant bisphenol A (BPA) is pointed out as a risk factor in development of food allergy and food intolerance, two adverse food reactions increasing worldwide. We evaluated the consequences of perinatal exposure to low doses of BPA on immune-specific response to the food antigen ovalbumin (OVA) at adulthood. Perinatal exposure to BPA (0.5, 5, or 50 µg/kg/d) from 15th day of gravidity to pups weaning resulted in an increase of anti-OVA IgG titers at all BPA dosages in OVA-tolerized rats, and at 5 µg/kg/d in OVA-immunized rats compared to control rats treated with vehicle. In BPA-treated and OVA-tolerized rats, increased anti-OVA IgG titers were associated with higher IFNγ secretion by the spleen. This result is in accordance with the increase of activated CD4(+)CD44(high)CD62L(low) T lymphocytes observed in spleen of BPA-exposed rats compared to controls. Finally, when BPA-treated OVA-tolerized rats were orally challenged with OVA, colonic inflammation occurred, with neutrophil infiltration, increased IFNγ, and decreased TGFß. We show that perinatal exposure to BPA altered oral tolerance and immunization to dietary antigens (OVA). In summary, the naive immune system of neonate is vulnerable to low doses of BPA that trigger food intolerance later in life.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Hipersensibilidad a los Alimentos/inmunología , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/inmunología , Envejecimiento , Animales , Femenino , Sistema Inmunológico/efectos de los fármacos , Ovalbúmina/inmunología , Embarazo , Preñez , Ratas Wistar , Linfocitos T/efectos de los fármacos , Destete
17.
Am J Physiol Gastrointest Liver Physiol ; 307(4): G420-9, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24970779

RESUMEN

Despite well-known intestinal epithelial barrier impairment and visceral hypersensitivity in irritable bowel syndrome (IBS) patients and IBS-like models, structural and physical changes in the mucus layer remain poorly understood. Using a water avoidance stress (WAS) model, we aimed at evaluating whether 1) WAS modified gut permeability, visceral sensitivity, mucin expression, biochemical structure of O-glycans, and related mucus physical properties, and 2) whether Lactobacillus farciminis treatment prevented these alterations. Wistar rats received orally L. farciminis or vehicle for 14 days; at day 10, they were submitted to either sham or 4-day WAS. Intestinal paracellular permeability and visceral sensitivity were measured in vivo. The number of goblet cells and Muc2 expression were evaluated by histology and immunohistochemistry, respectively. Mucosal adhesion of L. farciminis was determined ex situ. The mucin O-glycosylation profile was obtained by mass spectrometry. Surface imaging of intestinal mucus was performed at nanoscale by atomic force microscopy. WAS induced gut hyperpermeability and visceral hypersensitivity but did not modify either the number of intestinal goblet cells or Muc2 expression. In contrast, O-glycosylation of mucins was strongly affected, with the appearance of elongated polylactosaminic chain containing O-glycan structures, associated with flattening and loss of the mucus layer cohesive properties. L. farciminis bound to intestinal Muc2 and prevented WAS-induced functional alterations and changes in mucin O-glycosylation and mucus physical properties. WAS-induced functional changes were associated with mucus alterations resulting from a shift in O-glycosylation rather than from changes in mucin expression. L. farciminis treatment prevented these alterations, conferring epithelial and mucus barrier strengthening.


Asunto(s)
Mucosa Intestinal/metabolismo , Mucina 2/biosíntesis , Probióticos/uso terapéutico , Estrés Psicológico/fisiopatología , Animales , Colon/metabolismo , Corticosterona/sangre , Glicosilación , Células Caliciformes/fisiología , Mucosa Intestinal/microbiología , Lactobacillus/metabolismo , Masculino , Moco/metabolismo , Permeabilidad , Ratas , Ratas Wistar
18.
NPJ Sci Food ; 8(1): 43, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956092

RESUMEN

The haemoglobin content in meat is consistently associated with an increased risk of colorectal cancer, whereas calcium may play a role as a chemopreventive agent. Using rodent models, calcium salts have been shown to prevent the promotion of haem-induced and red meat-induced colorectal carcinogenesis by limiting the bioavailability of the gut luminal haem iron. Therefore, this study aimed to compare impacts of dietary calcium provided as calcium salts or dairy matrix on gut homoeostasis perturbations by high haeminic or non-haeminic iron intakes. A 3-week intervention study was conducted using Fischer 344 rats. Compared to the ferric citrate-enriched diet, the haemoglobin-enriched diet led to increased faecal, mucosal, and urinary lipoperoxidation-related biomarkers, resulting from higher gut luminal haem iron bioavailability. This redox imbalance was associated to a dysbiosis of faecal microbiota. The addition of calcium to haemoglobin-enriched diets limited haem iron bioavailability and counteracted redox imbalance, with improved preventive efficacy when calcium was provided in dairy matrix. Data integration revealed correlations between haem-induced lipoperoxidation products and bacterial communities belonging to Peptococcaceae, Eubacterium coprostanoligenes group, and Bifidobacteriaceae. This integrated approach provides evidence of the benefits of dairy matrix as a dietary calcium vehicle to counteract the deleterious side-effects of meat consumption.

19.
J Hepatol ; 58(5): 984-92, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23333450

RESUMEN

BACKGROUND & AIMS: Nutrients influence non-alcoholic fatty liver disease. Essential fatty acids deficiency promotes various syndromes, including hepatic steatosis, through increased de novo lipogenesis. The mechanisms underlying such increased lipogenic response remain unidentified. METHODS: We used wild type mice and mice lacking Liver X Receptors to perform a nutrigenomic study that aimed at examining the role of these transcription factors. RESULTS: We showed that, in the absence of Liver X Receptors, essential fatty acids deficiency does not promote steatosis. Consistent with this, Liver X Receptors are required for the elevated expression of genes involved in lipogenesis in response to essential fatty acids deficiency. CONCLUSIONS: This work identifies, for the first time, the central role of Liver X Receptors in steatosis induced by essential fatty acids deficiency.


Asunto(s)
Ácidos Grasos Esenciales/deficiencia , Hígado Graso/fisiopatología , Expresión Génica/fisiología , Lipogénesis/genética , Lipogénesis/fisiología , Receptores Nucleares Huérfanos/fisiología , Animales , Colesterol/metabolismo , Enfermedades Carenciales/fisiopatología , Grasas de la Dieta/farmacología , Modelos Animales de Enfermedad , Femenino , Expresión Génica/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/genética , Factores de Transcripción/fisiología , Triglicéridos/metabolismo , Regulación hacia Arriba/fisiología
20.
Am J Gastroenterol ; 108(8): 1322-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23711626

RESUMEN

OBJECTIVES: Luminal serine-proteases lead to increased colonic paracellular permeability and visceral hypersensitivity in patients with diarrhea-predominant irritable bowel syndrome (IBS-D). Other proteases, namely cysteine-proteases (CPs), increase airway permeability by digesting epithelial tight junction proteins. In this study, we focused on constipation-predominant IBS (IBS-C) and we aimed to (i) evaluate CP levels in two cohorts of IBS patients, (ii) test if IBS-C fecal supernatant (FSN) affects permeability, and visceral sensitivity after repeated administrations in mice, and (iii) evaluate occludin expression in IBS-C colonic biopsies. METHODS: Fecal CP activity was determined using selective substrate and inhibitor (E64). The effect of papain, as positive control, and IBS-C FSN administrations were evaluated on colonic paracellular permeability and mucosal occludin levels in mice and T84 monolayers. Occludin protein levels were evaluated in IBS-C colonic biopsies. Sensitivity to colorectal distension (CRD) was measured after repeated administrations of IBS-C FSN. RESULTS: We found in a subset of IBS-C patients an enhanced fecal CP activity, in comparison with healthy controls and IBS-D patients. CP activity levels positively correlated with disease severity and abdominal pain scoring. This association was confirmed by receiver operating characteristic curve analysis. In mice, repeated application of IBS-C FSN into colon triggered increased permeability, linked to the enzymatic degradation of occludin, and was associated with enhanced visceral sensitivity to CRD. Finally, occludin levels were found decreased in colonic biopsies from IBS-C patients, and IBS-C FSNs were able to degrade recombinant human occludin in vitro. All these effects were abolished by preincubation of IBS-C FSN with a CP inhibitor, E64. CONCLUSIONS: These data suggest that luminal CPs may represent a new factor contributing to the genesis of symptoms in IBS.


Asunto(s)
Proteasas de Cisteína/metabolismo , Síndrome del Colon Irritable/enzimología , Síndrome del Colon Irritable/patología , Uniones Estrechas/enzimología , Uniones Estrechas/patología , Dolor Abdominal/enzimología , Dolor Abdominal/patología , Adulto , Análisis de Varianza , Animales , Biopsia , Western Blotting , Estudios de Casos y Controles , Células Cultivadas , Estreñimiento/enzimología , Estreñimiento/patología , Electromiografía , Heces/enzimología , Femenino , Humanos , Absorción Intestinal , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ocludina/metabolismo , Dimensión del Dolor , Reacción en Cadena de la Polimerasa , Curva ROC , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA