Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 23(6): 2000-2012, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38752739

RESUMEN

Biological interpretation of untargeted LC-MS-based metabolomics data depends on accurate compound identification, but current techniques fall short of identifying most features that can be detected. The human fecal metabolome is complex, variable, incompletely annotated, and serves as an ideal matrix to evaluate novel compound identification methods. We devised an experimental strategy for compound annotation using multidimensional chromatography and semiautomated feature alignment and applied these methods to study the fecal metabolome in the context of fecal microbiota transplantation (FMT) for recurrent C. difficile infection. Pooled fecal samples were fractionated using semipreparative liquid chromatography and analyzed by an orthogonal LC-MS/MS method. The resulting spectra were searched against commercial, public, and local spectral libraries, and annotations were vetted using retention time alignment and prediction. Multidimensional chromatography yielded more than a 2-fold improvement in identified compounds compared to conventional LC-MS/MS and successfully identified several rare and previously unreported compounds, including novel fatty-acid conjugated bile acid species. Using an automated software-based feature alignment strategy, most metabolites identified by the new approach could be matched to features that were detected but not identified in single-dimensional LC-MS/MS data. Overall, our approach represents a powerful strategy to enhance compound identification and biological insight from untargeted metabolomics data.


Asunto(s)
Trasplante de Microbiota Fecal , Heces , Metaboloma , Metabolómica , Espectrometría de Masas en Tándem , Humanos , Heces/microbiología , Heces/química , Cromatografía Liquida/métodos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/metabolismo , Clostridioides difficile/metabolismo , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/análisis , Cromatografía Líquida con Espectrometría de Masas
2.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979297

RESUMEN

Protein is an essential macronutrient and variations in its source and quantity have been shown to impact long-term health outcomes. Differential health impacts of dietary proteins from various sources are likely driven by differences in their digestibility by the host and subsequent availability to the intestinal microbiota. However, our current understanding regarding the fate of dietary proteins from different sources in the gut, specifically how component proteins within these sources interact with the host and the gut microbiota, is limited. To determine which dietary proteins are efficiently digested by the host and which proteins escape host digestion and are used by the gut microbiota, we used high-resolution mass spectrometry to quantify the proteins that make up different dietary protein sources before and after digestion in germ-free and conventionally raised mice. Contrary to expectation, we detected proteins from all sources in fecal samples of both germ-free and conventional mice suggesting that even protein sources with a high digestive efficiency make it in part to the colon where they can serve as a substrate for the microbiota. Additionally, we found clear patterns where specific component proteins of the dietary protein sources were used as a preferred substrate by the microbiota or were not as accessible to the microbiota. We found that specific proteins with functions that could impact host health and physiology were differentially enriched in germ-free or conventionally raised mice. These findings reveal large differences in the fate of dietary protein from various sources in the gut that could explain some of their differential health impacts.

3.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370838

RESUMEN

Recurrent C. difficile infection (rCDI) is an urgent public health threat for which the last resort and lifesaving treatment is a fecal microbiota transplant (FMT). However, the exact mechanisms which mediate a successful FMT are not well understood. Here we use longitudinal stool samples collected from patients undergoing FMT to evaluate changes in the microbiome, metabolome, and lipidome after successful FMTs. We show changes in the abundance of many lipids, specifically acylcarnitines and bile acids, in response to FMT. These changes correlate with Enterobacteriaceae, which encode carnitine metabolism genes, and Lachnospiraceae, which encode bile salt hydrolases and baiA genes. LC-IMS-MS revealed a shift from microbial conjugation of primary bile acids pre-FMT to secondary bile acids post-FMT. Here we define the structural and functional changes in successful FMTs. This information will help guide targeted Live Biotherapeutic Product development for the treatment of rCDI and other intestinal diseases.

4.
bioRxiv ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38617292

RESUMEN

The source of protein in a persons diet affects their total life expectancy. However, the mechanisms by which dietary protein sources differentially impact human health and life expectancy are poorly understood. Dietary choices have major impacts on the composition and function of the intestinal microbiota that ultimately mediate host health. This raises the possibility that health outcomes based on dietary protein sources might be driven by interactions between dietary protein and the gut microbiota. In this study, we determine the effects of seven different sources of dietary protein on the gut microbiota in mice. We apply an integrated metagenomics-metaproteomics approach to simultaneously investigate the effects of these dietary protein sources on the gut microbiotas composition and function. The protein abundances measured by metaproteomics can provide microbial species abundances, and evidence for the phenotype of microbiota members on the molecular level because measured proteins allow us to infer the metabolic and physiological processes used by a microbial community. We showed that dietary protein source significantly altered the species composition and overall function of the gut microbiota. Different dietary protein sources led to changes in the abundance of microbial amino acid degrading proteins and proteins involved in the degradation of glycosylations on dietary protein. In particular, brown rice and egg white protein increased the abundance of amino acid degrading enzymes and egg white protein increased the abundance of bacteria and proteins usually associated with the degradation of the intestinal mucus barrier. These results show that dietary protein source can change the gut microbiotas metabolism, which could have major implications in the context of gut microbiota mediated diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA