Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389415

RESUMEN

MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org.


Asunto(s)
Ontologías Biológicas , COVID-19 , Humanos , Reconocimiento de Normas Patrones Automatizadas , Enfermedades Raras , Aprendizaje Automático
2.
PLoS Biol ; 19(3): e3001129, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33770077

RESUMEN

Decades of reductionist approaches in biology have achieved spectacular progress, but the proliferation of subdisciplines, each with its own technical and social practices regarding data, impedes the growth of the multidisciplinary and interdisciplinary approaches now needed to address pressing societal challenges. Data integration is key to a reintegrated biology able to address global issues such as climate change, biodiversity loss, and sustainable ecosystem management. We identify major challenges to data integration and present a vision for a "Data as a Service"-oriented architecture to promote reuse of data for discovery. The proposed architecture includes standards development, new tools and services, and strategies for career-development and sustainability.


Asunto(s)
Manejo de Datos/métodos , Difusión de la Información/métodos , Investigación Interdisciplinaria/tendencias , Biodiversidad , Disciplinas de las Ciencias Biológicas , Conservación de los Recursos Naturales , Ecosistema , Comunicación Interdisciplinaria , Investigación Interdisciplinaria/métodos
3.
Mamm Genome ; 34(3): 364-378, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37076585

RESUMEN

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.


Asunto(s)
Ontologías Biológicas , Disciplinas de las Ciencias Biológicas , Estudio de Asociación del Genoma Completo , Fenotipo
4.
PLoS Comput Biol ; 16(11): e1008376, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232313

RESUMEN

The rapidly decreasing cost of gene sequencing has resulted in a deluge of genomic data from across the tree of life; however, outside a few model organism databases, genomic data are limited in their scientific impact because they are not accompanied by computable phenomic data. The majority of phenomic data are contained in countless small, heterogeneous phenotypic data sets that are very difficult or impossible to integrate at scale because of variable formats, lack of digitization, and linguistic problems. One powerful solution is to represent phenotypic data using data models with precise, computable semantics, but adoption of semantic standards for representing phenotypic data has been slow, especially in biodiversity and ecology. Some phenotypic and trait data are available in a semantic language from knowledge bases, but these are often not interoperable. In this review, we will compare and contrast existing ontology and data models, focusing on nonhuman phenotypes and traits. We discuss barriers to integration of phenotypic data and make recommendations for developing an operationally useful, semantically interoperable phenotypic data ecosystem.


Asunto(s)
Bases de Datos Genéticas , Bases del Conocimiento , Fenómica , Animales , Clasificación , Biología Computacional , Ecosistema , Interacción Gen-Ambiente , Humanos , Modelos Biológicos , Modelos Genéticos , Modelos Estadísticos , Fenotipo , Semántica
5.
Exposome ; 4(1): osae001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344436

RESUMEN

This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environment on phenotypes, emphasizing the variance attributable to shared and nonshared environmental factors, underscoring the complexity of quantifying the exposome's influence on health outcomes. Secondly, we introduce the importance of advanced data-driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study (ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term "exposome-wide association study, ExWAS," to facilitate clear communication and literature retrieval in this field. The paper aims to guide future health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic research. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the exposome and its significant implications for human health.

6.
Front Artif Intell ; 6: 1201002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384147

RESUMEN

Introduction: Climate change is already affecting ecosystems around the world and forcing us to adapt to meet societal needs. The speed with which climate change is progressing necessitates a massive scaling up of the number of species with understood genotype-environment-phenotype (G×E×P) dynamics in order to increase ecosystem and agriculture resilience. An important part of predicting phenotype is understanding the complex gene regulatory networks present in organisms. Previous work has demonstrated that knowledge about one species can be applied to another using ontologically-supported knowledge bases that exploit homologous structures and homologous genes. These types of structures that can apply knowledge about one species to another have the potential to enable the massive scaling up that is needed through in silico experimentation. Methods: We developed one such structure, a knowledge graph (KG) using information from Planteome and the EMBL-EBI Expression Atlas that connects gene expression, molecular interactions, functions, and pathways to homology-based gene annotations. Our preliminary analysis uses data from gene expression studies in Arabidopsis thaliana and Populus trichocarpa plants exposed to drought conditions. Results: A graph query identified 16 pairs of homologous genes in these two taxa, some of which show opposite patterns of gene expression in response to drought. As expected, analysis of the upstream cis-regulatory region of these genes revealed that homologs with similar expression behavior had conserved cis-regulatory regions and potential interaction with similar trans-elements, unlike homologs that changed their expression in opposite ways. Discussion: This suggests that even though the homologous pairs share common ancestry and functional roles, predicting expression and phenotype through homology inference needs careful consideration of integrating cis and trans-regulatory components in the curated and inferred knowledge graph.

7.
Exposome ; 3(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38766521

RESUMEN

The exposome refers to all of the internal and external life-long exposures that an individual experiences. These exposures, either acute or chronic, are associated with changes in metabolism that will positively or negatively influence the health and well-being of individuals. Nutrients and other dietary compounds modulate similar biochemical processes and have the potential in some cases to counteract the negative effects of exposures or enhance their beneficial effects. We present herein the concept of Nutritional Pharmacology/Toxicology which uses high-information metabolomics workflows to identify metabolic targets associated with exposures. Using this information, nutritional interventions can be designed toward those targets to mitigate adverse effects or enhance positive effects. We also discuss the potential for this approach in precision nutrition where nutrients/diet can be used to target gene-environment interactions and other subpopulation characteristics. Deriving these "nutrient cocktails" presents an opportunity to modify the effects of exposures for more beneficial outcomes in public health.

8.
J Biomed Semantics ; 14(1): 3, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36823605

RESUMEN

BACKGROUND: Evaluating the impact of environmental exposures on organism health is a key goal of modern biomedicine and is critically important in an age of greater pollution and chemicals in our environment. Environmental health utilizes many different research methods and generates a variety of data types. However, to date, no comprehensive database represents the full spectrum of environmental health data. Due to a lack of interoperability between databases, tools for integrating these resources are needed. In this manuscript we present the Environmental Conditions, Treatments, and Exposures Ontology (ECTO), a species-agnostic ontology focused on exposure events that occur as a result of natural and experimental processes, such as diet, work, or research activities. ECTO is intended for use in harmonizing environmental health data resources to support cross-study integration and inference for mechanism discovery. METHODS AND FINDINGS: ECTO is an ontology designed for describing organismal exposures such as toxicological research, environmental variables, dietary features, and patient-reported data from surveys. ECTO utilizes the base model established within the Exposure Ontology (ExO). ECTO is developed using a combination of manual curation and Dead Simple OWL Design Patterns (DOSDP), and contains over 2700 environmental exposure terms, and incorporates chemical and environmental ontologies. ECTO is an Open Biological and Biomedical Ontology (OBO) Foundry ontology that is designed for interoperability, reuse, and axiomatization with other ontologies. ECTO terms have been utilized in axioms within the Mondo Disease Ontology to represent diseases caused or influenced by environmental factors, as well as for survey encoding for the Personalized Environment and Genes Study (PEGS). CONCLUSIONS: We constructed ECTO to meet Open Biological and Biomedical Ontology (OBO) Foundry principles to increase translation opportunities between environmental health and other areas of biology. ECTO has a growing community of contributors consisting of toxicologists, public health epidemiologists, and health care providers to provide the necessary expertise for areas that have been identified previously as gaps.


Asunto(s)
Ontologías Biológicas , Humanos , Bases de Datos Factuales
9.
Database (Oxford) ; 20232023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37971715

RESUMEN

Over the last couple of decades, there has been a rapid growth in the number and scope of agricultural genetics, genomics and breeding databases and resources. The AgBioData Consortium (https://www.agbiodata.org/) currently represents 44 databases and resources (https://www.agbiodata.org/databases) covering model or crop plant and animal GGB data, ontologies, pathways, genetic variation and breeding platforms (referred to as 'databases' throughout). One of the goals of the Consortium is to facilitate FAIR (Findable, Accessible, Interoperable, and Reusable) data management and the integration of datasets which requires data sharing, along with structured vocabularies and/or ontologies. Two AgBioData working groups, focused on Data Sharing and Ontologies, respectively, conducted a Consortium-wide survey to assess the current status and future needs of the members in those areas. A total of 33 researchers responded to the survey, representing 37 databases. Results suggest that data-sharing practices by AgBioData databases are in a fairly healthy state, but it is not clear whether this is true for all metadata and data types across all databases; and that, ontology use has not substantially changed since a similar survey was conducted in 2017. Based on our evaluation of the survey results, we recommend (i) providing training for database personnel in a specific data-sharing techniques, as well as in ontology use; (ii) further study on what metadata is shared, and how well it is shared among databases; (iii) promoting an understanding of data sharing and ontologies in the stakeholder community; (iv) improving data sharing and ontologies for specific phenotypic data types and formats; and (v) lowering specific barriers to data sharing and ontology use, by identifying sustainability solutions, and the identification, promotion, or development of data standards. Combined, these improvements are likely to help AgBioData databases increase development efforts towards improved ontology use, and data sharing via programmatic means. Database URL  https://www.agbiodata.org/databases.


Asunto(s)
Manejo de Datos , Fitomejoramiento , Animales , Genómica/métodos , Bases de Datos Factuales , Difusión de la Información
10.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747660

RESUMEN

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focused measurable trait data. Moreover, variations in gene expression in response to environmental disturbances even without any genetic alterations can also be associated with particular biological attributes. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.

11.
J Clin Transl Sci ; 7(1): e214, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900350

RESUMEN

Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph-based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly "Question-of-the-Month (QotM) Challenge" series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.

12.
Clin Transl Sci ; 15(8): 1848-1855, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36125173

RESUMEN

Within clinical, biomedical, and translational science, an increasing number of projects are adopting graphs for knowledge representation. Graph-based data models elucidate the interconnectedness among core biomedical concepts, enable data structures to be easily updated, and support intuitive queries, visualizations, and inference algorithms. However, knowledge discovery across these "knowledge graphs" (KGs) has remained difficult. Data set heterogeneity and complexity; the proliferation of ad hoc data formats; poor compliance with guidelines on findability, accessibility, interoperability, and reusability; and, in particular, the lack of a universally accepted, open-access model for standardization across biomedical KGs has left the task of reconciling data sources to downstream consumers. Biolink Model is an open-source data model that can be used to formalize the relationships between data structures in translational science. It incorporates object-oriented classification and graph-oriented features. The core of the model is a set of hierarchical, interconnected classes (or categories) and relationships between them (or predicates) representing biomedical entities such as gene, disease, chemical, anatomic structure, and phenotype. The model provides class and edge attributes and associations that guide how entities should relate to one another. Here, we highlight the need for a standardized data model for KGs, describe Biolink Model, and compare it with other models. We demonstrate the utility of Biolink Model in various initiatives, including the Biomedical Data Translator Consortium and the Monarch Initiative, and show how it has supported easier integration and interoperability of biomedical KGs, bringing together knowledge from multiple sources and helping to realize the goals of translational science.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Ciencia Traslacional Biomédica , Conocimiento
13.
Clin Transl Sci ; 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35611543

RESUMEN

Clinical, biomedical, and translational science has reached an inflection point in the breadth and diversity of available data and the potential impact of such data to improve human health and well-being. However, the data are often siloed, disorganized, and not broadly accessible due to discipline-specific differences in terminology and representation. To address these challenges, the Biomedical Data Translator Consortium has developed and tested a pilot knowledge graph-based "Translator" system capable of integrating existing biomedical data sets and "translating" those data into insights intended to augment human reasoning and accelerate translational science. Having demonstrated feasibility of the Translator system, the Translator program has since moved into development, and the Translator Consortium has made significant progress in the research, design, and implementation of an operational system. Herein, we describe the current system's architecture, performance, and quality of results. We apply Translator to several real-world use cases developed in collaboration with subject-matter experts. Finally, we discuss the scientific and technical features of Translator and compare those features to other state-of-the-art, biomedical graph-based question-answering systems.

14.
Front Toxicol ; 4: 817999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387429

RESUMEN

Toxicological evaluation of chemicals using early-life stage zebrafish (Danio rerio) involves the observation and recording of altered phenotypes. Substantial variability has been observed among researchers in phenotypes reported from similar studies, as well as a lack of consistent data annotation, indicating a need for both terminological and data harmonization. When examined from a data science perspective, many of these apparent differences can be parsed into the same or similar endpoints whose measurements differ only in time, methodology, or nomenclature. Ontological knowledge structures can be leveraged to integrate diverse data sets across terminologies, scales, and modalities. Building on this premise, the National Toxicology Program's Systematic Evaluation of the Application of Zebrafish in Toxicology undertook a collaborative exercise to evaluate how the application of standardized phenotype terminology improved data consistency. To accomplish this, zebrafish researchers were asked to assess images of zebrafish larvae for morphological malformations in two surveys. In the first survey, researchers were asked to annotate observed malformations using their own terminology. In the second survey, researchers were asked to annotate the images from a list of terms and definitions from the Zebrafish Phenotype Ontology. Analysis of the results suggested that the use of ontology terms increased consistency and decreased ambiguity, but a larger study is needed to confirm. We conclude that utilizing a common data standard will not only reduce the heterogeneity of reported terms but increases agreement and repeatability between different laboratories. Thus, we advocate for the development of a zebrafish phenotype atlas to help laboratories create interoperable, computable data.

15.
Artículo en Inglés | MEDLINE | ID: mdl-34501574

RESUMEN

Harmonized language is critical for helping researchers to find data, collecting scientific data to facilitate comparison, and performing pooled and meta-analyses. Using standard terms to link data to knowledge systems facilitates knowledge-driven analysis, allows for the use of biomedical knowledge bases for scientific interpretation and hypothesis generation, and increasingly supports artificial intelligence (AI) and machine learning. Due to the breadth of environmental health sciences (EHS) research and the continuous evolution in scientific methods, the gaps in standard terminologies, vocabularies, ontologies, and related tools hamper the capabilities to address large-scale, complex EHS research questions that require the integration of disparate data and knowledge sources. The results of prior workshops to advance a harmonized environmental health language demonstrate that future efforts should be sustained and grounded in scientific need. We describe a community initiative whose mission was to advance integrative environmental health sciences research via the development and adoption of a harmonized language. The products, outcomes, and recommendations developed and endorsed by this community are expected to enhance data collection and management efforts for NIEHS and the EHS community, making data more findable and interoperable. This initiative will provide a community of practice space to exchange information and expertise, be a coordination hub for identifying and prioritizing activities, and a collaboration platform for the development and adoption of semantic solutions. We encourage anyone interested in advancing this mission to engage in this community.


Asunto(s)
Inteligencia Artificial , Lenguaje , Salud Ambiental , Bases del Conocimiento , National Institute of Environmental Health Sciences (U.S.) , Estados Unidos
16.
PeerJ ; 8: e9219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821528

RESUMEN

Integrative modeling methods can now enable macrosystem-level understandings of biodiversity patterns, such as range changes resulting from shifts in climate or land use, by aggregating species-level data across multiple monitoring sources. This requires ensuring that taxon interpretations match up across different sources. While encouraging checklist standardization is certainly an option, coercing programs to change species lists they have used consistently for decades is rarely successful. Here we demonstrate a novel approach for tracking equivalent names and concepts, applied to a network of 10 regional programs that use the same protocols (so-called "Pollard walks") to monitor butterflies across America north of Mexico. Our system involves, for each monitoring program, associating the taxonomic authority (in this case one of three North American butterfly fauna treatments: Pelham, 2014; North American Butterfly Association, Inc., 2016; Opler & Warren, 2003) that shares the most similar overall taxonomic interpretation to the program's working species list. This allows us to define each term on each program's list in the context of the appropriate authority's species concept and curate the term alongside its authoritative concept. We then aligned the names representing equivalent taxonomic concepts among the three authorities. These stepping stones allow us to bridge a species concept from one program's species list to the name of the equivalent in any other program, through the intermediary scaffolding of aligned authoritative taxon concepts. Using a software tool we developed to access our curation system, a user can link equivalent species concepts between data collecting agencies with no specialized knowledge of taxonomic complexities.

17.
Database (Oxford) ; 20202020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33439246

RESUMEN

People are one of the best known and most stable entities in the biodiversity knowledge graph. The wealth of public information associated with people and the ability to identify them uniquely open up the possibility to make more use of these data in biodiversity science. Person data are almost always associated with entities such as specimens, molecular sequences, taxonomic names, observations, images, traits and publications. For example, the digitization and the aggregation of specimen data from museums and herbaria allow us to view a scientist's specimen collecting in conjunction with the whole corpus of their works. However, the metadata of these entities are also useful in validating data, integrating data across collections and institutional databases and can be the basis of future research into biodiversity and science. In addition, the ability to reliably credit collectors for their work has the potential to change the incentive structure to promote improved curation and maintenance of natural history collections.


Asunto(s)
Biodiversidad , Historia Natural , Bases de Datos Factuales , Humanos , Museos
18.
Environ Health Perspect ; 128(12): 125002, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33369481

RESUMEN

BACKGROUND: A critical challenge in genomic medicine is identifying the genetic and environmental risk factors for disease. Currently, the available data links a majority of known coding human genes to phenotypes, but the environmental component of human disease is extremely underrepresented in these linked data sets. Without environmental exposure information, our ability to realize precision health is limited, even with the promise of modern genomics. Achieving integration of gene, phenotype, and environment will require extensive translation of data into a standard, computable form and the extension of the existing gene/phenotype data model. The data standards and models needed to achieve this integration do not currently exist. OBJECTIVES: Our objective is to foster development of community-driven data-reporting standards and a computational model that will facilitate the inclusion of exposure data in computational analysis of human disease. To this end, we present a preliminary semantic data model and use cases and competency questions for further community-driven model development and refinement. DISCUSSION: There is a real desire by the exposure science, epidemiology, and toxicology communities to use informatics approaches to improve their research workflow, gain new insights, and increase data reuse. Critical to success is the development of a community-driven data model for describing environmental exposures and linking them to existing models of human disease. https://doi.org/10.1289/EHP7215.


Asunto(s)
Exposición a Riesgos Ambientales , Contaminantes Ambientales , Genoma Humano , Genómica , Humanos
19.
F1000Res ; 7: 803, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30345023

RESUMEN

The institutions of science are in a state of flux. Declining public funding for basic science, the increasingly corporatized administration of universities, increasing "adjunctification" of the professoriate and poor academic career prospects for postdoctoral scientists indicate a significant mismatch between the reality of the market economy and expectations in higher education for science. Solutions to these issues typically revolve around the idea of fixing the career "pipeline", which is envisioned as being a pathway from higher-education training to a coveted permanent position, and then up a career ladder until retirement. In this paper, we propose and describe the term "ecosystem" as a more appropriate way to conceptualize today's scientific training and the professional landscape of the scientific enterprise. First, we highlight the issues around the concept of "fixing the pipeline". Then, we articulate our ecosystem metaphor by describing a series of concrete design patterns that draw on peer-to-peer, decentralized, cooperative, and commons-based approaches for creating a new dynamic scientific enterprise.


Asunto(s)
Selección de Profesión , Movilidad Laboral , Educación de Postgrado , Universidades , Humanos , Grupo Paritario
20.
PeerJ Comput Sci ; 4: e164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33816817

RESUMEN

Biodiversity information is made available through numerous databases that each have their own data models, web services, and data types. Combining data across databases leads to new insights, but is not easy because each database uses its own system of identifiers. In the absence of stable and interoperable identifiers, databases are often linked using taxonomic names. This labor intensive, error prone, and lengthy process relies on accessible versions of nomenclatural authorities and fuzzy-matching algorithms. To approach the challenge of linking diverse data, more than technology is needed. New social collaborations like the Global Unified Open Data Architecture (GUODA) that combines skills from diverse groups of computer engineers from iDigBio, server resources from the Advanced Computing and Information Systems (ACIS) Lab, global-scale data presentation from EOL, and independent developers and researchers are what is needed to make concrete progress on finding relationships between biodiversity datasets. This paper will discuss a technical solution developed by the GUODA collaboration for faster linking across databases with a use case linking Wikidata and the Global Biotic Interactions database (GloBI). The GUODA infrastructure is a 12-node, high performance computing cluster made up of about 192 threads with 12 TB of storage and 288 GB memory. Using GUODA, 20 GB of compressed JSON from Wikidata was processed and linked to GloBI in about 10-11 min. Instead of comparing name strings or relying on a single identifier, Wikidata and GloBI were linked by comparing graphs of biodiversity identifiers external to each system. This method resulted in adding 119,957 Wikidata links in GloBI, an increase of 13.7% of all outgoing name links in GloBI. Wikidata and GloBI were compared to Open Tree of Life Reference Taxonomy to examine consistency and coverage. The process of parsing Wikidata, Open Tree of Life Reference Taxonomy and GloBI archives and calculating consistency metrics was done in minutes on the GUODA platform. As a model collaboration, GUODA has the potential to revolutionize biodiversity science by bringing diverse technically minded people together with high performance computing resources that are accessible from a laptop or desktop. However, participating in such a collaboration still requires basic programming skills.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA