Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 24(1): 140, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944935

RESUMEN

Downy mildew disease of sunflower, caused by the obligate biotrophic oomycete Plasmopara halstedii, can have significant economic impact on sunflower cultivation. Using high-throughput whole transcriptome sequencing, four developmental phases in 16 time-points of Pl. halstedii infecting Helianthus annuus were investigated. With the aim of identifying potential functional and regulatory motifs upstream of co-expressed genes, time-series derived gene expression profiles were clustered based on their time-course similarity, and their upstream regulatory gene sequences were analyzed here. Several conserved motifs were found upstream of co-expressed genes, which might be involved in binding specific transcription factors. Such motifs were also found associated with virulence related genes, and could be studied on a genetically tractable model to clarify, if these are involved in regulating different stages of pathogenesis.


Asunto(s)
Helianthus , Oomicetos , Peronospora , Helianthus/genética , Factores de Tiempo , Oomicetos/genética , Secuencia Conservada , Enfermedades de las Plantas/genética
2.
Environ Microbiol ; 25(10): 1830-1846, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37171093

RESUMEN

The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.


Asunto(s)
Solanum lycopersicum , Solanum , Alternaria/genética , Productos Agrícolas , Chile
3.
J Eukaryot Microbiol ; 70(2): e12957, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36447377

RESUMEN

Holocarpic oomycetes have been neglected over several decades, until interest in these organisms has recently resurged. One of the most widespread genera of holocarpic oomycetes is Pontisma, parasitic to red seaweeds throughout all oceans. Recently, the genus Sirolpidium (parasitic to green algae) was found to be congeneric with Pontisma. This hinted at a high pathogenic versatility and prompted the screening of other macroalgae on the coastline of Iceland. During this survey a parasite of the brown algae Pylaiella littoralis was found, which formed anisolpidium-like thalli, but produced biflagellate zoospores. Phylogenetic investigations revealed that the parasite was placed in the genus Pontisma. In reconstructions based on partial nrSSU sequences, it grouped with some sequences of parasitoids of the diatom genus Licmophora, but the more variable mitochondrial cox2 sequences were divergent. Based on phylogenetic evidence and the unique parasitism of brown algae, the parasitoid is described as Pontisma blauvikense in this study. Pontisma blauvikense is the fourth oomycete species parasitic to Pylaiella, which is also parasitised by Euychasma dicksonii and two Anisolpidium species. For a better understanding of the ecology and evolution of holocarpic oomycetes, further research is necessary to investigate the host spectrum of Pontisma in general and Pontisma blauvikense in particular.


Asunto(s)
Diatomeas , Oomicetos , Phaeophyceae , Filogenia , Phaeophyceae/parasitología
4.
Plant J ; 106(3): 733-752, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33570802

RESUMEN

The biotrophic pathogen Ustilago maydis causes smut disease on maize (Zea mays) and induces the formation of tumours on all aerial parts of the plant. Unlike in other biotrophic interactions, no gene-for-gene interactions have been identified in the maize-U. maydis pathosystem. Thus, maize resistance to U. maydis is considered a polygenic, quantitative trait. Here, we study the molecular mechanisms of quantitative disease resistance (QDR) in maize, and how U. maydis interferes with its components. Based on quantitative scoring of disease symptoms in 26 maize lines, we performed an RNA sequencing (RNA-Seq) analysis of six U. maydis-infected maize lines of highly distinct resistance levels. The different maize lines showed specific responses of diverse cellular processes to U. maydis infection. For U. maydis, our analysis identified 406 genes being differentially expressed between maize lines, of which 102 encode predicted effector proteins. Based on this analysis, we generated U. maydis CRISPR/Cas9 knock-out mutants for selected candidate effector sets. After infections of different maize lines with the fungal mutants, RNA-Seq analysis identified effectors with quantitative, maize line-specific virulence functions, and revealed auxin-related processes as a possible target for one of them. Thus, we show that both transcriptional activity and virulence function of fungal effector genes are modified according to the infected maize line, providing insights into the molecular mechanisms underlying QDR in the maize-U. maydis interaction.


Asunto(s)
Basidiomycota/metabolismo , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Basidiomycota/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Resistencia a la Enfermedad , Edición Génica , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Transcriptoma/genética , Zea mays/genética
5.
Mol Phylogenet Evol ; 166: 107321, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626809

RESUMEN

Biotrophic plant parasites cause economically important diseases, e.g. downy mildew of grape, powdery mildew of legumes, wheat stripe rust, and wheat bunt. But also in natural ecosystems, these organisms are abundant and diverse, and for many hosts more than one specialised biotrophic pathogen is known. However, only a fraction of their diversity is thought to have been described. There is accumulating evidence for the importance of host jumping for the diversification of obligate biotrophic pathogens but tracing this process along the phylogeny of pathogens is often complicated by a lack of resolution of phylogenetic trees, low taxon and specimen sampling, or either too few or too many host jumps in the pathogen group in question. Here, a clade of Peronospora species mostly infecting members of the Ranunculales was investigated using multigene analyses and ancestral state reconstructions. These analyses show that this clade started out in Papaveraceae, with subsequent host jumps to Berberidaceae, Euphorbiaceae, and Ranunculaceae. In Ranunculaceae, radiation to a variety of hosts took place, and a new host jump occurred to Caryophyllaceae. This highlights that host jumping and subsequent radiation is a key evolutionary process driving the diversification of Peronospora. It seems likely that the observed pattern can be generalised to other obligate parasite lineages, as diverse hosts in unrelated families have also been reported for other pathogen groups, including powdery mildew, rust fungi, and smut fungi.


Asunto(s)
Parásitos , Peronospora , Animales , Ecosistema , Humanos , Peronospora/genética , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
6.
Phytopathology ; 112(2): 422-434, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34058860

RESUMEN

Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily by sporangia, whereas the sexual oospores are rarely observed. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from central, southern, and western Europe; the Middle East; Central America; North America; and Australia. Genetic variations among the six subpopulations accounted for ∼8% of the total variation, including moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P < 0.001). Evidence of linkage disequilibrium (P < 0.001) showed that populations contained partially clonal subpopulations but that subpopulations from Australia and Mediterranean Europe did not. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection and allowed conclusions regarding the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intracontinental and intercontinental migration patterns of this important pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Peronospora , Flujo Génico , Variación Genética , Repeticiones de Microsatélite/genética , Peronospora/genética , Enfermedades de las Plantas/parasitología , Nicotiana/genética
7.
New Phytol ; 232(2): 719-733, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34270791

RESUMEN

The constitution and regulation of effector repertoires shape host-microbe interactions. Ustilago maydis and Sporisorium reilianum are two closely related smut fungi, which both infect maize but cause distinct disease symptoms. Understanding how effector orthologs are regulated in these two pathogens can therefore provide insights into the evolution of different infection strategies. We tracked the infection progress of U. maydis and S. reilianum in maize leaves and used two distinct infection stages for cross-species RNA-sequencing analyses. We identified 207 of 335 one-to-one effector orthologs as differentially regulated during host colonization, which might reflect the distinct disease development strategies. Using CRISPR-Cas9-mediated gene conversion, we identified two differentially expressed effector orthologs with conserved function between two pathogens. Thus, differential expression of functionally conserved genes might contribute to species-specific adaptation and symptom development. Interestingly, another differentially expressed orthogroup (UMAG_05318/Sr10075) showed divergent protein function, providing a possible case for neofunctionalization. Collectively, we demonstrated that the diversification of effector genes in related pathogens can be caused both by alteration on the transcriptional level and through functional diversification of the encoded effector proteins.


Asunto(s)
Ustilago , Zea mays , Basidiomycota , Enfermedades de las Plantas , Ustilago/genética , Virulencia/genética , Zea mays/genética
8.
Mol Plant Microbe Interact ; 33(5): 742-753, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32237964

RESUMEN

Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.


Asunto(s)
Genoma Mitocondrial , Peronospora/genética , Genómica , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas
9.
New Phytol ; 224(2): 605-617, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31381166

RESUMEN

Host jumping is a process by which pathogens settle in new host groups. It is a cornerstone in the evolution of pathogens, as it leads to pathogen diversification. It is unsurprising that host jumping is observed in facultative pathogens, as they can reproduce even if they kill their hosts. However, host jumps were thought to be rare in obligate biotrophic pathogens, but molecular phylogenetics has revealed that the opposite is true. Here, I review some concepts and recent findings and present several hypotheses on the matter. In short, pathogens evolve and diversify via host jumps, followed by radiation, specialisation and speciation. Host jumps are facilitated by, for example, effector innovations, stress, compatible pathogens and physiological similarities. Host jumping, subsequent establishment, and speciation takes place rapidly - within centuries and millennia rather than over millions of years. If pathogens are unable to evolve into neutral or mutualistic interactions with their hosts, they will eventually be removed from the host population, despite balancing trade-offs. Thus, generally, plant pathogens only survive in the course of evolution if they jump hosts. This is also reflected by the diversity patterns observed in many genera of plant pathogens, where it leads to a mosaic pattern of host groups over time, in which the original host group becomes increasingly obscure.


Asunto(s)
Evolución Biológica , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Hongos/genética
10.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31693786

RESUMEN

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Asunto(s)
Productos Biológicos/química , Vías Biosintéticas/genética , Metabolómica/métodos , Humanos
11.
BMC Genomics ; 19(1): 48, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29334897

RESUMEN

BACKGROUND: Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology. RESULTS: Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery. CONCLUSIONS: The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.


Asunto(s)
Agrocybe/genética , Cuerpos Fructíferos de los Hongos/genética , Genoma Fúngico , Agrocybe/citología , Agrocybe/enzimología , Secuencia de Aminoácidos , Biopolímeros/metabolismo , Secuencia Conservada , Cuerpos Fructíferos de los Hongos/citología , Genes Fúngicos , Genómica , Oxidorreductasas/genética
12.
New Phytol ; 217(3): 1190-1202, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29094363

RESUMEN

There is increasing knowledge on the diversity of root-endophytic fungi, but limited information on their lifestyles and dependence on hosts hampers our understanding of their ecological functions. We compared diversity and biogeographical patterns of cultivable and noncultivable root endophytes to assess whether their occurrence is determined by distinct ecological factors. The endophytic diversity in roots of nonmycorrhizal Microthlaspi spp. growing across Europe was assessed using high-throughput sequencing (HTS) and compared with a previous dataset based on cultivation of endophytes from the same root samples. HTS revealed a large fungal richness undetected by cultivation, but which largely comprised taxa with restricted distributions and/or low representation of sequence reads. Both datasets coincided in a consistent high representation of widespread endophytes within orders Pleosporales, Hypocreales and Helotiales, as well as similar associations of community structure with spatial and environmental conditions. Likewise, distributions of particular endophytes inferred by HTS agreed with cultivation data in suggesting individual ecological preferences. Our findings support that Microthlaspi spp. roots are colonized mostly by saprotrophic and likely facultative endophytes, and that differential niche preferences and distribution ranges among fungi importantly drive the assembly of root-endophytic communities.


Asunto(s)
Ascomicetos/fisiología , Endófitos/fisiología , Micorrizas/fisiología , Biodiversidad , Bases de Datos Genéticas , Microbiota , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
13.
BMC Evol Biol ; 17(1): 93, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28359299

RESUMEN

BACKGROUND: Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. RESULTS: We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. CONCLUSIONS: Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation.


Asunto(s)
Ascomicetos/genética , Ascomicetos/fisiología , Líquenes/genética , Líquenes/fisiología , Adaptación Fisiológica , Ascomicetos/clasificación , Ecosistema , Genoma Fúngico , Genómica , Líquenes/clasificación , Región Mediterránea , Simbiosis
14.
Mol Ecol ; 26(18): 4618-4630, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28667772

RESUMEN

Studying community structure and dynamics of plant-associated fungi is the basis for unravelling their interactions with hosts and ecosystem functions. A recent sampling revealed that only a few fungal groups, as defined by internal transcribed spacer region (ITS) sequence similarity, dominate culturable root endophytic communities of nonmycorrhizal Microthlaspi spp. plants across Europe. Strains of these fungi display a broad phenotypic and functional diversity, which suggests a genetic variability masked by ITS clustering into operational taxonomic units (OTUs). The aims of this study were to identify how genetic similarity patterns of these fungi change across environments and to evaluate their ability to disperse and adapt to ecological conditions. A first ITS-based haplotype analysis of ten widespread OTUs mostly showed a low to moderate genotypic differentiation, with the exception of a group identified as Cadophora sp. that was highly diverse. A multilocus phylogeny based on additional genetic loci (partial translation elongation factor 1α, beta-tubulin and actin) and amplified fragment length polymorphism profiling of 185 strains representative of the five dominant OTUs revealed a weak association of genetic differences with geography and environmental conditions, including bioclimatic and soil factors. Our findings suggest that dominant culturable root endophytic fungi have efficient dispersal capabilities, and that their distribution is little affected by environmental filtering. Other processes, such as inter- and intraspecific biotic interactions, may be more important for the local assembly of their communities.


Asunto(s)
Biodiversidad , Hongos/clasificación , Filogenia , Raíces de Plantas/microbiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Europa (Continente) , Genotipo
15.
BMC Genomics ; 17: 537, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27488257

RESUMEN

BACKGROUND: Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes. RESULTS: Here we report the genomic details of two new reference Photorhabdus species. By then conducting genomic comparisons across the genus, we show that there are several highly conserved biosynthetic gene clusters. These clusters produce a range of bioactive small molecules that support the pathogenic phase of the integral relationship that Photorhabdus maintain with nematodes. CONCLUSIONS: Photorhabdus contain several genetic loci that allow them to become specialist insect pathogens by efficiently evading insect immune responses and killing the insect host.


Asunto(s)
Proteínas Bacterianas/genética , Nematodos/microbiología , Photorhabdus/genética , Análisis de Secuencia de ADN/métodos , Animales , Composición de Base , Secuencia de Bases , Secuencia Conservada , Genoma Bacteriano , Insectos/parasitología , Familia de Multigenes , Photorhabdus/metabolismo , Metabolismo Secundario , Simbiosis
16.
Environ Microbiol ; 18(8): 2418-34, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26530450

RESUMEN

Root endophytic fungi are found in a great variety of plants and ecosystems, but the ecological drivers of their biogeographic distribution are poorly understood. Here, we investigate the occurrence of root endophytes in the non-mycorrhizal plant genus Microthlaspi, and the effect of environmental factors and geographic distance in structuring their communities at a continental scale. We sampled 52 plant populations across the northern Mediterranean and central Europe and used a cultivation approach to study their endophytic communities. Cultivation of roots yielded 2601 isolates, which were grouped into 296 operational taxonomic units (OTUs) by internal transcribed spacer sequencing of 1998 representative colonies. Climatic and spatial factors were the best descriptors of the structure of endophytic communities, outweighing soil characteristics, host genotype and geographical distance. OTU richness was negatively affected by precipitation, and the composition of communities followed latitudinal gradients of precipitation and temperature. Only six widespread OTUs belonging to the orders Pleosporales, Hypocreales and Helotiales represented about 50% of all isolates. Assessments of their individual distribution revealed particular ecological preferences or a cosmopolitan occurrence. Our findings support a strong influence of the local environment in determining root endophytic communities, and show a different niche occupancy by individual endophytes.


Asunto(s)
Brassicaceae/microbiología , Endófitos/genética , Raíces de Plantas/microbiología , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , ADN Intergénico/genética , Ecología , Ecosistema , Ambiente , Europa (Continente) , Geografía , Filogenia , Saccharomycetales/genética , Suelo/química , Microbiología del Suelo , Simbiosis
17.
Phytopathology ; 106(1): 6-18, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26649784

RESUMEN

Downy mildews are a notorious group of oomycete plant pathogens, causing high economic losses in various crops and ornamentals. The most species-rich genus of oomycetes is the genus Peronospora. This review provides a wide overview of these pathogens, ranging from macro- and micro-evolutionary patterns, their biodiversity and ecology to short overviews for the currently economically most important pathogens and potential emerging diseases. In this overview, the taxonomy of economically relevant species is also discussed, as the application of the correct names and species concepts is a prerequisite for effective quarantine regulations and phytosanitary measures.


Asunto(s)
Variación Genética , Peronospora/genética , Evolución Biológica , Clasificación
18.
Phytopathology ; 106(11): 1426-1437, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27392175

RESUMEN

Bremia lactucae is an obligate, oomycete pathogen of lettuce that causes leaf chlorosis and necrosis and adversely affects marketability. The disease has been managed with a combination of host resistance and fungicide applications with success over the years. Fungicide applications are routinely made under the assumption that inoculum is always present during favorable environmental conditions. This approach often leads to fungicide resistance in B. lactucae populations. Detection and quantification of airborne B. lactucae near lettuce crops provides an estimation of the inoculum load, enabling more judicious timing of fungicide applications. We developed a quantitative polymerase chain reaction (qPCR)-based assay using a target sequence in mitochondrial DNA for specific detection of B. lactucae. Validation using amplicon sequencing of DNA from 83 geographically diverse isolates, representing 14 Bremia spp., confirmed that the primers developed for the TaqMan assays are species specific and only amplify templates from B. lactucae. DNA from a single sporangium could be detected at a quantification cycle (Cq) value of 32, and Cq values >35 were considered to be nonspecific. The coefficient of determination (R2) for regression between sporangial density derived from flow cytometry and Cq values derived from the qPCR was 0.86. The assay was deployed using spore traps in the Salinas Valley, where nearly half of U.S. lettuce is produced. The deployment of this sensitive B. lactucae-specific assay resulted in the detection of the pathogen during the 2-week lettuce-free period as well as during the cropping season. These results demonstrate that this assay will be useful for quantifying inoculum load in and around the lettuce fields for the purpose of timing fungicide applications based on inoculum load.


Asunto(s)
Lactuca/parasitología , Oomicetos/aislamiento & purificación , Enfermedades de las Plantas/parasitología , Microbiología del Aire , Cartilla de ADN/genética , Fungicidas Industriales , Geografía , Oomicetos/genética , Hojas de la Planta/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Esporas
19.
Mol Plant Microbe Interact ; 28(8): 901-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25894205

RESUMEN

The introgression of disease resistance (R) genes encoding immunoreceptors with broad-spectrum recognition into cultivated potato appears to be the most promising approach to achieve sustainable management of late blight caused by the oomycete pathogen Phytophthora infestans. Rpi-blb2 from Solanum bulbocastanum shows great potential for use in agriculture based on preliminary potato disease trials. Rpi-blb2 confers immunity by recognizing the P. infestans avirulence effector protein AVRblb2 after it is translocated inside the plant cell. This effector belongs to the RXLR class of effectors and is under strong positive selection. Structure-function analyses revealed a key polymorphic amino acid (position 69) in AVRblb2 effector that is critical for activation of Rpi-blb2. In this study, we reconstructed the evolutionary history of the Avrblb2 gene family and further characterized its genetic structure in worldwide populations. Our data indicate that Avrblb2 evolved as a single-copy gene in a putative ancestral species of P. infestans and has recently expanded in the Phytophthora spp. that infect solanaceous hosts. As a consequence, at least four variants of AVRblb2 arose in P. infestans. One of these variants, with a Phe residue at position 69, evades recognition by the cognate resistance gene. Surprisingly, all Avrblb2 variants are maintained in pathogen populations. This suggests a potential benefit for the pathogen in preserving duplicated versions of AVRblb2, possibly because the variants may have different contributions to pathogen fitness in a diversified solanaceous host environment.


Asunto(s)
Proteínas Fúngicas/genética , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Secuencia de Aminoácidos , Secuencia Conservada , Proteínas Fúngicas/metabolismo , Variación Genética , Interacciones Huésped-Patógeno/genética , Datos de Secuencia Molecular , Mutación , Filogenia , Phytophthora/genética , Polimorfismo Genético , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
BMC Genomics ; 16: 233, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25887949

RESUMEN

BACKGROUND: Xanthophyllomyces dendrorhous is a basal agaricomycete with uncertain taxonomic placement, known for its unique ability to produce astaxanthin, a carotenoid with antioxidant properties. It was the aim of this study to elucidate the organization of its CoA-derived pathways and to use the genomic information of X. dendrorhous for a phylogenomic investigation of the Basidiomycota. RESULTS: The genome assembly of a haploid strain of Xanthophyllomyces dendrorhous revealed a genome of 19.50 Megabases with 6385 protein coding genes. Phylogenetic analyses were conducted including 48 fungal genomes. These revealed Ustilaginomycotina and Agaricomycotina as sister groups. In the latter a well-supported sister-group relationship of two major orders, Polyporales and Russulales, was inferred. Wallemia occupies a basal position within the Agaricomycotina and X. dendrorhous represents the basal lineage of the Tremellomycetes, highlighting that the typical tremelloid parenthesomes have either convergently evolved in Wallemia and the Tremellomycetes, or were lost in the Cystofilobasidiales lineage. A detailed characterization of the CoA-related pathways was done and all genes for fatty acid, sterol and carotenoid synthesis have been assigned. CONCLUSIONS: The current study ascertains that Wallemia with tremelloid parenthesomes is the most basal agaricomycotinous lineage and that Cystofilobasidiales without tremelloid parenthesomes are deeply rooted within Tremellomycetes, suggesting that parenthesomes at septal pores might be the core synapomorphy for the Agaricomycotina. Apart from evolutionary insights the genome sequence of X. dendrorhous will facilitate genetic pathway engineering for optimized astaxanthin or oxidative alcohol production.


Asunto(s)
Acetilcoenzima A/metabolismo , Agaricales/genética , Basidiomycota/genética , Basidiomycota/metabolismo , Genoma Fúngico , Redes y Vías Metabólicas , Agaricales/metabolismo , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Metabolismo Secundario/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA