Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 355, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400844

RESUMEN

Nanoparticle-based delivery systems have emerged as powerful tools in the field of pest management, offering precise and effective means of delivering double-stranded RNA (dsRNA), a potent agent for pest control through RNA interference (RNAi). This comprehensive review aims to evaluate and compare various types of nanoparticles for their suitability in dsRNA delivery for pest management applications. The review begins by examining the unique properties and advantages of different nanoparticle materials, including clay, chitosan, liposomes, carbon, gold and silica. Each material's ability to protect dsRNA from degradation and its potential for targeted delivery to pests are assessed. Furthermore, this review delves into the surface modification strategies employed to enhance dsRNA delivery efficiency. Functionalization with oligonucleotides, lipids, polymers, proteins and peptides is discussed in detail, highlighting their role in improving stability, cellular uptake, and specificity of dsRNA delivery.This review also provides valuable guidance on choosing the most suitable nanoparticle-based system for delivering dsRNA effectively and sustainably in pest management. Moreover, it identifies existing knowledge gaps and proposes potential research directions aimed at enhancing pest control strategies through the utilization of nanoparticles and dsRNA.


Asunto(s)
Nanopartículas , ARN Bicatenario , Animales , Insectos/genética , Interferencia de ARN , Liposomas/metabolismo , Control de Plagas
2.
Pestic Biochem Physiol ; 198: 105712, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225070

RESUMEN

Bemisia tabaci is a global invasive pest causing substantial loss on several economically important crops and has developed a very high level of resistance to insecticides making current management practices ineffective. Thus, the novel pest management strategy like RNA interference (RNAi) has emerged as a potential molecular tool in the management of insect pests particularly B. tabaci. The present study investigated RNAi mediated silencing of the Ecdysone Receptor (EcR) gene in B. tabaci Asia-I using biodegradable Chitosan Nanoparticles (CNPs) hydrogel containing EcR dsRNA. The formation of nanohydrogel and dsRNA loading were characterized by gel retardation assay, scanning electron microscopy (SEM); transmission electron microscopy (TEM) and Fourier transform infrared microscopy (FTIR). The stability of CNPs/dsRNA was assessed by exposure to direct sunlight and UV light for different time periods. The CNPs/dsRNA exhibited increased stability over the untreated control and further confirmed by bioassay studies which yielded mortality over 80% and effectively down regulated the expression of the EcR gene as confirmed by qRT-PCR analysis. These investigations provide potential avenues for advancing innovative pest management strategies using biopolymer CNPs hydrogel, which can enhance the efficiency of dsRNA as a safe and targeted solution in the management of whiteflies.


Asunto(s)
Quitosano , Hemípteros , Receptores de Esteroides , Animales , Quitosano/farmacología , Quitosano/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Interferencia de ARN , Hidrogeles/metabolismo
3.
Saudi J Biol Sci ; 31(6): 104005, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741655

RESUMEN

Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), is an economically important invasive cassava pest responsible for the massive devastation of cassava in Asia and African continent. Initially, identifying this invasive pest posed challenges because it closely resembled native mealybug species. Additionally, the traditional morphological identification process is labor-intensive and time-consuming. Detecting invasive pests at an early stage is crucial, hence development of a rapid detection assay is essential. In the current study, we have developed a simple, rapid, sensitive, and efficient molecular detection assay for P. manihoti based on Recombinase Polymerase Amplification (RPA). The primers for the RPA assay were designed using unique nucleic acid sequences of P. manihoti, and the protocol was standardized. Specificity test demonstrated that the RPA assay could amplify DNA of P. manihoti only, and no amplification was observed in six other mealybug species. The specificity of assay was confirmed using SYBR green-based colorimetric detection and gel electrophoresis where positive samples showed 195 bp amplicon size in P. manihoti samples. The assay successfully amplified P. manihoti DNA in thirty minutes at an annealing temperature of 41° C in a water bath and displayed a sensitivity of 72.5 picograms per microliter. The assay's simplicity, rapidity, and high sensitivity make it a valuable tool for detecting and monitoring P. manihoti in quarantine stations and facilitating in development of a portable diagnostic kit.

4.
Sci Data ; 11(1): 748, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982074

RESUMEN

The broad mite, Polyphagotarsonemus latus (Tarsonemidae: Acari) is a highly polyphagous species that damage plant species spread across 57 different families. This pest has developed high levels of resistance to some commonly used acaricides. In the present investigation, we deciphered the genome information of P. latus by PacBio HiFi sequencing. P. latus is the third smallest arthropod genome sequenced so far with a size of 49.1 Mb. The entire genome was assembled into two contigs. A set of 9,286 protein-coding genes were annotated. Its compact genome size could be credited with multiple features such as very low repeat content (5.1%) due to the lack of proliferation of transposable elements, high gene density (189.1/Mb), more intronless genes (20.3%) and low microsatellite density (0.63%).


Asunto(s)
Ácaros , Animales , Ácaros/genética , Genoma , Repeticiones de Microsatélite
5.
Artículo en Inglés | MEDLINE | ID: mdl-39128380

RESUMEN

Maconellicoccus hirsutus is a highly polyphagous insect pest, posing a substantial threat to various crop sp., especially in the tropical and sub-tropical regions of the world. While extensive physiological and biological studies have been conducted on this pest, the lack of genetic information has hindered our understanding of the molecular mechanisms underlying its growth, development, and xenobiotic metabolism. The Cytochrome P450 gene, a member of the CYP gene superfamily ubiquitous in living organisms is associated with growth, development, and the metabolism of both endogenous and exogenous substances, contributing to the insect's adaptability in diverse environments. To elucidate the specific role of the CYP450 gene family in M. hirsutus which has remained largely unexplored, a de novo transcriptome assembly of the pink mealybug was constructed. A total of 120 proteins were annotated as CYP450 genes through homology search of the predicted protein sequences across different databases. Phylogenetic studies resulted in categorizing 120 CYP450 genes into four CYP clans. A total of 22 CYP450 families and 30 subfamilies were categorized, with CYP6 forming the dominant family. The study also revealed five genes (Halloween genes) associated with the insect hormone biosynthesis pathway. Further, the expression of ten selected CYP450 genes was studied using qRT-PCR across crawler, nymph, and adult stages, and identified genes that were expressed at specific stages of the insects. Thus, the findings of this study reveal the expression dynamics and possible function of the CYP450 gene family in the growth, development, and adaptive strategies of M. hirsutus which can be further functionally validated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA