Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Surg Endosc ; 37(5): 3691-3700, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36645484

RESUMEN

BACKGROUND: Hyperspectral Imaging (HSI) is a reliable and safe imaging method for taking intraoperative perfusion measurements. This is the first study translating intraoperative HSI to an in vivo laparoscopic setting using a CE-certified HSI-system for minimally invasive surgery (HSI-MIS). We aim to compare it to an established HSI-system for open surgery (HSI-Open). METHODS: Intraoperative HSI was done using the HSI-MIS and HSI-Open at the Region of Interest (ROI). 19 patients undergoing gastrointestinal resections were analyzed in this study. The HSI-MIS-acquired images were aligned with those from the HSI-Open, and spectra and parameter images were compared pixel-wise. We calculated the Mean Absolute Error (MAE) for Tissue Oxygen Saturation (StO2), Near-Infrared Perfusion Index (NIR-PI), Tissue Water Index (TWI), and Organ Hemoglobin Index (OHI), as well as the Root Mean Squared Error (RMSE) over the whole spectrum. Our analysis of parameters was optimized using partial least squares (PLS) regression. Two experienced surgeons carried out an additional color-change analysis, comparing the ROI images and deciding whether they provided the same (acceptable) or different visual information (rejected). RESULTS: HSI and subsequent image registration was possible in 19 patients. MAE results for the original calculation were StO2 orig. 17.2% (± 7.7%), NIR-PIorig. 16.0 (± 9.5), TWIorig. 18.1 (± 7.9), OHIorig. 14.4 (± 4.5). For the PLS calculation, they were StO2 PLS 12.6% (± 5.2%), NIR-PIPLS 10.3 (± 6.0), TWIPLS 10.6 (± 5.1), and OHIPLS 11.6 (± 3.0). The RMSE between both systems was 0.14 (± 0.06). In the color-change analysis; both surgeons accepted more images generated using the PLS method. CONCLUSION: Intraoperative HSI-MIS is a new technology and holds great potential for future applications in surgery. Parameter deviations are attributable to technical differences and can be reduced by applying improved calculation methods. This study is an important step toward the clinical implementation of HSI for minimally invasive surgery.


Asunto(s)
Imágenes Hiperespectrales , Laparoscopía , Humanos , Tracto Gastrointestinal , Hemoglobinas
2.
Surg Endosc ; 36(10): 7794-7799, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35546207

RESUMEN

BACKGROUND: Hyperspectral imaging (HSI) during surgical procedures is a new method for perfusion quantification and tissue discrimination. Its use has been limited to open surgery due to large camera sizes, missing color video, or long acquisition times. A hand-held, laparoscopic hyperspectral camera has been developed now to overcome those disadvantages and evaluated clinically for the first time. METHODS: In a clinical evaluation study, gastrointestinal resectates of ten cancer patients were investigated using the laparoscopic hyperspectral camera. Reference data from corresponding anatomical regions were acquired with a clinically approved HSI system. An image registration process was executed that allowed for pixel-wise comparisons of spectral data and parameter images (StO2: oxygen saturation of tissue, NIR PI: near-infrared perfusion index, OHI: organ hemoglobin index, TWI: tissue water index) provided by both camera systems. The mean absolute error (MAE) and root mean square error (RMSE) served for the quantitative evaluations. Spearman's rank correlation between factors related to the study design like the time of spectral white balancing and MAE, respectively RMSE, was calculated. RESULTS: The obtained mean MAEs between the TIVITA® Tissue and the laparoscopic hyperspectral system resulted in StO2: 11% ± 7%, NIR PI: 14±3, OHI: 14± 5, and TWI: 10 ± 2. The mean RMSE between both systems was 0.1±0.03 from 500 to 750 nm and 0.15 ±0.06 from 750 to 1000 nm. Spearman's rank correlation coefficients showed no significant correlation between MAE or RMSE and influencing factors related to the study design. CONCLUSION: Qualitatively, parameter images of the laparoscopic system corresponded to those of the system for open surgery. Quantitative deviations were attributed to technical differences rather than the study design. Limitations of the presented study are addressed in current large-scale in vivo trials.


Asunto(s)
Imágenes Hiperespectrales , Laparoscopía , Tracto Gastrointestinal , Hemoglobinas , Humanos
3.
Sci Rep ; 12(1): 16459, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180520

RESUMEN

Laparoscopic procedures can be assisted by intraoperative modalities, such as quantitative perfusion imaging based on fluorescence or hyperspectral data. If these modalities are not available at video frame rate, fast image registration is needed for the visualization in augmented reality. Three feature-based algorithms and one pre-trained deep homography neural network (DH-NN) were tested for single and multi-homography estimation. Fine-tuning was used to bridge the domain gap of the DH-NN for non-rigid registration of laparoscopic images. The methods were validated on two datasets: an open-source record of 750 manually annotated laparoscopic images, presented in this work, and in-vivo data from a novel laparoscopic hyperspectral imaging system. All feature-based single homography methods outperformed the fine-tuned DH-NN in terms of reprojection error, Structural Similarity Index Measure, and processing time. The feature detector and descriptor ORB1000 enabled video-rate registration of laparoscopic images on standard hardware with submillimeter accuracy.


Asunto(s)
Algoritmos , Laparoscopía , Procesamiento de Imagen Asistido por Computador/métodos , Laparoscopía/métodos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA